Identifying and Reducing Private DNS Updates

CAIDA/WIDE Workshop

Speaker: Hao Shang
Date: March 17th, 2006
Outline

- Motivation
- Background of RFC1918 updates
- Magnitude of RFC1918 updates
- Identification of OSes producing the RFC1918 updates
- Methods to avoid/reduce RFC1918 updates
- Summary
Motivation

- CAIDA’s previous work reveals that lots of DNS updates for private (RFC1918) addresses hit AS112 servers
- Harms caused by these updates
 - Waste of bandwidth: up to 15Mbps in one link
 - Require creation and maintenance of AS112 servers
 - Risks to user’s privacy and security
- Purpose of this study
 - Quantify, identify, and reduce RFC1918 updates
Background

- **RFC1918**
 - Allocates 3 blocks of private IP space

- **RFC2131 (DHCP)**
 - Assigns IP addresses dynamically
 - Makes it hard to keep IP↔Name mappings current

- **RFC2136 (DDNS)**
 - Allows dynamic updates of IP↔Name mappings at DNS servers
 - Consolidated with secure features (RFC2930, 3645)

- **Problem?**
 - Configuration inconsistency between DNS and DHCP server/client causes leaking of RFC1918 updates to public
 - Countermeasure: AS112 project
Magnitude of RFC1918 updates
– General View (UDP Updates)

AS112 logs of RFC1918 updates, Oct’02-Jan’06. Top: Palo Alto. Bottom: Osaka
Magnitude of RFC1918 Updates – Observations

- Large amount of UDP updates at the level of millions/hour
 - Inbound packets are about 10 times more if also include TCP
- High diversity of IP sources
 - RFC1918 updates is a global phenomenon
- Abrupt jumps/drops at the number of updates are caused by route changes rather than OS evolution:
 - Proportional changes of unique IP addresses, prefixes, and ASes
 - Changes happened in seconds
Identification of OSes of RFC1918 Updates – Signature Techniques

- **Application-level:**
 - TCP TKEY message: query name, algorithm, key, RR location
 - UDP update: RR counts, location, types, TTL
 - Able to distinguish different flavors of Windows

- **Transport-level:**
 - Using a well-know software p0f
 - TCP SYN packet: window size, flags, options
 - Windows and non-windows split only

- **Network-level:**
 - TCP and UDP: TTL
 - Windows and non-windows split only
Identification of OSes of RFC1918 Updates – Data and Results

- Data description:

<table>
<thead>
<tr>
<th>Date</th>
<th>Packets</th>
<th>TCP%</th>
<th>UDP%</th>
<th>SrcIPs</th>
<th>Prefixes</th>
<th>ASes</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-17-05</td>
<td>1.65M</td>
<td>89.5%</td>
<td>10.5%</td>
<td>69133</td>
<td>11954</td>
<td>2685</td>
</tr>
<tr>
<td>02-01-06</td>
<td>0.81M</td>
<td>86.7%</td>
<td>13.3%</td>
<td>37823</td>
<td>6314</td>
<td>1357</td>
</tr>
</tbody>
</table>

- RFC1918 Updates from Windows systems
 - This table is for 03-17-2005. Results for 02-01-2006 are the same or slightly higher.
 - 90% Internet generic traffic at a tire-1 link between San Francisco to Seattle is from Windows

<table>
<thead>
<tr>
<th>Level</th>
<th>TCP</th>
<th>UDP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application-level</td>
<td>98.6%</td>
<td>96.8%</td>
<td>98.4%</td>
</tr>
<tr>
<td>Transport-level</td>
<td>98.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network-level</td>
<td></td>
<td></td>
<td>> 97.6%</td>
</tr>
</tbody>
</table>
Identification of OSes of RFC1918 Updates – More Results

- Breakup unique IP addresses by different Windows Systems
- In total, 99.5% IP addresses in the logs having at least one Windows machine at or behind it

- Mix: IPs showing more than one type of Windows signatures
Methods to Avoid/Reduce RFC1918 updates

- **User efforts**
 - Manually disable dynamic DNS updates
 - Require end users’ awareness of this problem

- **Vendor efforts**
 - Turn off default dynamic DNS updates, or send RFC1918 update more conservatively

- **Administrator efforts**
 - Enterprise: configure DNS server and DNS updating clients consistently
 - ISP: configure DNS server to point itself as SOA for both forward and inverse RFC1918 blocks
Summary

- Leaking of RFC1918 updates is a global problem and costly in resource.
- Windows systems account for over 97% of total RFC1918 updates.
- Over 99% of unique source IP addresses in the traffic traces each has at least one Windows machine at or behind it.
- Cautions can be taken to avoid/reduce RFC1918 updates.
Questions/Comments

Thank You!