Understanding Global Internet Health

David Moore (dmoore@caida.org)

January, 2003
What CAIDA does

- measure and analyze the *global* Internet to the extent possible (macroscopic, synoptic views)

- build tools, hardware, deploy infrastructure

- visualize massive network and security datasets
Outline

• DNS Root Server Health
• Worldwide Denial-of-Service Attacks
• Code-Red Worm
• Sapphire Worm (aka Slapper, Friday’s MS-SQL worm)
• Worm Containment
Summary of the types of queries received on Oct. 4, 2002 by a Domain Name System (DNS) root server in California

Unnecessary Queries 98 percent
1. Repeated and identical queries* (70 percent)
2. Unknown top-level domains (13 percent)
3. Numeric IP address already in query (7 percent)
4. Referral not cached** (4 percent)
5. Other*** (4 percent)

Legitimate Queries 2 percent
Global Denial-of-Service Attacks
(three weeks in February 2001)

• Lots of attacks – some very large
 – >12,000 attacks against >5,000 targets
 – Most < 1,000 pps, but some over 600,000 pps

• Most attacks are short – some have long duration
 – a few victims were attacked continuously all weeks

• Everyone is a potential target
 – Targets not dominated by any TLD, or domain
 • Targets include large e-commerce sites, mid-sized business, ISPs, government, universities and end-users
 • Targets include routers and domain name servers
DoS Attacks over time

![Graph showing DoS Attacks over time](image)
Code-Red Worm: Background

- July and August 2001
- Spread via Microsoft IIS web server and designed to launch DoS attack on www1.whitehouse.gov

- Measured using Network Telescope at UCSD
 - ~1 in every 256 worm probes came to our telescope

- Over 350,000 hosts infected in **24 hour period**
- Between 11:00 and 16:00 UTC, the growth is exponential
- **2,000 hosts infected per minute** at the peak of the infection rate (16:00 UTC)
Code-Red Worm: Infection Rate

The graph above illustrates the infection rate of the Code Red Worm. The x-axis represents time (UTC) from 00:00 on 07/19 to 04:00 on 07/20, while the y-axis shows the number of infected hosts, ranging from 0 to 400,000.
Code-Red Worm: Topology Effects

- Topological view of spread

- Some worms preferentially chose “nearby” addresses
 - e.g., CodeRed II and Nimda
Small-business and home users were large fraction of the infected machines.
Code-Red Worm: Geographic Spread
Sapphire Worm
(aka SQL Slammer)

- Sent more than 55 million probes per second worldwide
- Majority of vulnerable machines infected in under 5 min
- Collateral damage:
 - Bank of America ATMs, 911 disruptions, Continental Airlines cancelled flights

Before 9:30PM (PST)
After 9:40PM (PST)
Worm Containment

- Code-Red: 350,000 victims in under 12 hours
- Sapphire: 60k-100k victims in a few minutes

- Sapphire probe rate was too high to be stopped by content (payload) filtering even by 100 largest ISPs, once it started.

- Proactive defenses must be used against fast worms.
Conclusions

• The US must address fundamental questions about Internet health.

 – DNS: can we reduce junk queries and only keep valid ones?
 – DoS: how can sites protect themselves? everyone?
 – Worm tracking: what techniques do hackers use to spread worms?
 – Worm containment: can we protect ourselves? everyone?
Cooperative Association for Internet Data Analysis (CAIDA)
San Diego Supercomputer Center
Dept. Computer Science & Engineering
University of California, San Diego