Archipelago Measurement Infrastructure

Status and Experiences

Young Hyun

CAIDA 10th CAIDA-WIDE Workshop Aug 15, 2008

Introduction

 Archipelago (Ark) is CAIDA's next-generation active measurement infrastructure
 * evolution of the skitter infrastructure

* in production since Sep 12, 2007

Outline

* Monitor Deployment
* Four Datasets
* Alias Resolution
* Lessons Learned
* Future Work

Monitor Deployment

* 27 monitors in 21 countries

- * 24 actively probing in 17 countries
- * 3 inactive
 - hardware problem; ICMP rate limiting; IPv6 only
 - Germany, Hungary, Luxembourg
- * 8 in US

Monitor Deployment

- * down the road: 38 monitors in 26 countries
 - * 4 monitors coming soon (< month?):
 - Canada, US (3)
 - * 7 monitors in next 1-6 months:
 - China, Argentina, Italy, South Africa, Pakistan, US (2)

Datasets

IPv4 Routed /24 Topology
IPv4 Routed /24 AS Links
DNS Names

* DNS Query/Response Traffic

IPv4 Routed /24 Topology

- * ongoing large-scale topology measurements
 - * ICMP Paris traceroute to every routed /24 (7+ million)
 - * running scamper
 - written by Matthew Luckie of WAND with funding from WIDE among others
- * group monitors into teams and dynamically divide up the measurement work among team members
 - * 13-member team probes every /24 in 48-56 hrs at 100pps
 - * only one monitor probes each /24 per cycle
- * so far, from Sep 12, 2007 to Aug 12, 2008:
 - * 1.3 billion traceroutes; 519GB of warts files

IPv4 Routed /24 Topology

IPv4 Routed /24 AS Links

- * AS links from Routed /24 Topology traces
 - * map IP addresses to ASes with RouteViews BGP table
 - * one AS links file per cycle per team
- * statistics:
 - * ~29k AS links per cycle per team at present
 - * AS links observed over most recent 1, 2, and 7 months (# cycles in parentheses):

	July	June-July	Jan-July
team 1	48.1k (12)	58.1k (26)	89.7k (94)
team 2	47.5k (11)	55.1k (20)	75.4k (48)
combined	56.6k (23)	67.1k (46)	100.1k (142)

These are lower bounds: no AS links files generated for some cycles due to bug.

DNS Names

- * automated ongoing DNS lookup of IP addresses seen in the Routed /24 Topology traces
 - * all intermediate addresses and *responding* destinations
 - * using our in-house bulk DNS lookup service (HostDB)
 - can look up millions of addresses per day
- * 85M hostnames since March 2008

DNS Traffic

- * tcpdump capture of DNS query/response traffic
 - * only for lookups of Routed /24 Topology addresses
 - * continuous collection of 3-5M packets per day
 - * can download most recent 30 days of pcap files
- a broad sampling of the nameservers on the Internet due to the broad coverage of the routed space in traces
- * how many nameservers have IPv6 glue records? DNSSEC records? support EDNS? typical TTLs?

* Goal: collapse interfaces observed in traceroute paths into routers

* toward a router-level map of the Internet

* alias resolution work led by Ken Keys

* how much topology data should we examine?

- * about time period (window), not quantity
 - last month, 3 months, or year of traces?
- * window must be large enough
 - include topology traversed infrequently or irregularly
 - in Routed /24 Topology dataset, only one monitor probes each /24 per cycle
- * window should not be too large
 - may include topology that no longer exists
 - will increase amount and difficulty of processing

* how much topology data should we examine?

- * answer depends on the frequency of appearance of addresses and links
- * if an address or link is absent, is it really gone from the topology or did we just fail to sample it?
- * based on our analysis, 20-24 cycles seem to be a reasonable window (at 2-3 days per cycle)
 - * we examined all team 1 data available on 2008-06-24
 - 108 cycles in 285 days
 - 3.3M intermediate addresses (that is, non-destinations)
 - 5.9M IP links

- * all techniques have strengths and weaknesses, so we combine them to get the best results
- * our plan:
 - * run iffinder on Routed /24 data
 - * run **APAR** on Routed /24 data and iffinder results
 - * run Ally on final set of aliases, as validation

Alias Resolution: iffinder

- * written by Ken Keys
- * "Mercator technique" described by
 - * J.-J. Pansiot and D. Grad. "On routes and multicast trees in the Internet."
 - * R. Govindam and H. Tangmunarunkit. "Heuristics for Internet Map Discovery."

* procedure:

- * send UDP packet to unused port on all router interfaces
- ICMP Port Unreachable response from a different address implies that the target address and reply address may be aliases

Alias Resolution: iffinder

- * we ran iffinder on 23 Ark nodes using 24 cycles of Routed /24 data (team 1 only)
 - * each node probed the same 2.3M addresses in random order
 - * took about 11 hours per node
- * results were similar across all nodes:
 - * 1.25M to 1.36M port unreachables
 - 54% to 59% of probed addresses
 - * 45k to 50k port unreachables from different address
 - about 2% of probed addresses

Alias Resolution: iffinder

* combined results:

- * 118k interfaces in 46k interface sets (possible routers)
 - 5% of 2.3M addresses probed were assigned to a set
- * averaging 2.5 interfaces per set
- * 35k sets have 2 addresses
- * 455 sets have 10 or more addresses
- * largest set has 100 addresses

* Analytical and Probe-based Alias Resolution

* M. Gunes and K. Sarac. "Resolving IP Aliases in Building Tracroute-Based Internet Maps."

* procedure:

- * ping router addresses to collect TTLs
 - we can simply examine TTLs in our collected traces
 - use TTLs to rule out pairs of interfaces as aliases
- * identify subnets that router addresses belong to
 - look for common prefixes that do not introduce any contradictions (e.g., loops) in the graph
- * compare paths that cross the same subnet in opposite directions to infer aliases

* compare paths that cross the same subnet in opposite directions to infer aliases:

* compare paths that cross the same subnet in opposite directions to infer aliases:

* compare paths that cross the same subnet in opposite directions to infer aliases:

* compare paths that cross the same subnet in opposite directions to infer aliases:

* compare paths that cross the same subnet in opposite directions to infer aliases:

* compare paths that cross the same subnet in opposite directions to infer aliases:

- * Ken Keys is writing a scalable implementation that can handle ~100M traces seen in Routed /24 dataset
 - * have a way to avoid loading full paths into memory

Alias Resolution: Ally

- * N. Spring, R. Mahajan, and D. Wetherall. "Measuring ISP topologies with Rocketfuel."
- * procedure:
 - * for each pair (A,B) of possible aliases, send sequence of probes to A, B, A, B
 - * if IP ID of responses are sequential and close, A and B are most likely aliases
 - * if A and B each respond with sequential IP IDs, but they do not agree with each other, then A and B are most likely not aliases
- * we have too many addresses to probe all N² pairs
 - * useful to validate alias pairs found by other means

Alias Resolution: Weaknesses

* iffinder

- * not many interfaces reply with a different address
- * slight chance for false positives with middleboxes

* APAR

- * needs paths in both directions across several adjacent interfaces
- * relies on traceroute paths, which can be incorrect

* Ally

- * without some means of choosing likely pairs (e.g., clustering interfaces by TTL), need to probe O(N²) pairs
- * some routers do not use sequential IP IDs

Alias Resolution: Validation

* acquire list of true router interfaces from network providers and compare

- * beg and plead for information (might work)
- * WIDE and IIJ router lists?
- * validate APAR and Ally with Internet2 data
 - * but not iffinder, because Internet2 routers do not respond to iffinder probes

Lessons Learned

* it takes a long time to deploy a monitor

* tireless work of Emile Aben and Dan Andersen

* for example:

- NLANR's AMP infrastructure decommissioned in July 2006
 - worked for >2 years to repurpose boxes for Ark
- skitter infrastructure decommissioned in Feb 2008
 - still not fully migrated to Ark after 6 months

* need to

- (re-)establish contact
 - former contact long gone; spam filters; language hurdles
- get approval for Ark AUP (Memorandum of Understanding)
- remote upgrade operating system or ship out new box
- troubleshoot and fix network connectivity
 - firewalls; broken routing; mysterious rate limiting

Lessons Learned

* expect fAiLUre

- * hardware failures (of course)
 - power supply death; hard drive death
- * software bugs
 - plenty of my own
 - but also helped tracked down
 - FreeBSD kernel crash when passing file descriptors via Unix sockets
 - Ruby memory leak and threading deadlock
- * time jumping backwards under Xen
- * network problems
- * power loss, power loss, power loss

failures and issues since Sep 12, 2007

- 2007-09-12 to 2007-09-18: Ark software issues
- 2007-09-25: amw-us rebooted due to faulty breaker
- 2007-10-06: mnl-ph crashed? (/ not properly unmounted, no sign of controlled reboot) 2007-10-15: team-sorter coredump
- 2007-10-30: syd-au unreachable
- 2007-10-31: mnl-ph produce less traces per hour -- rate limiting?
- 2007-11-07: a few hours idling due to issue with switching over to new BGP prefixes
- 2007-11-20: downloading from mnl-ph stopped, though box itself continued probing
- 2007-11-26: cji-kr stopped providing data
- 2007-12-03: global tuple space wedged??
- 2007-12-22: hel-fi: scamper coredumped
- 2008-01-04: multiple cycles in daily files
- 2008-01-22: san-us accidentally switched to probing with UDP (fixed 2008-02-15)
- 2008-02-08: lei-de crashed 2008-02-15: san-us crashed
- 2008-02-15: vie-at temporarily hung due to time going backwards
- 2008-02-16: ark-collector failed for vie-at
- 2008-02-23: lej-de crashed
- 2008-03-06: rebooting san-us to get IPv6 configured properly
- 2008-03-07: scamper-20070523-p8 crashed on syd-au
- 2008-03-08: ark-collector failed for mnl-ph: TypeError exception
- 2008-03-09: ark-collector had transient (that is, recovered) problems for a while for bon-es
- 2008-03-10: lei-de crashed
- · 2008-03-10: san-us crashed -- hard drive seems to be dying
- 2008-03-11: global tuple space wedged??
- 2008-03-14: hiz-nz rebooted due to power outage 2008-03-14: lej-de crashed
- 2008-03-15: lej-de crashed again and again and again 2008-03-19: ark-collector failed for cmn-ma: TypeError exception
- 2008-04-01: scamper-I produced corrupted gig-br traces
- 2008-04-01: scamper-I crashed on gig-br
- 2008-04-15: updated & restarted nrt-jp & cbg-uk after recompiling 4.6 kernel to have bpf
- 2008-04-18: mnl-oh crashed
- · 2008-04-21: updated & restarted syd-au & cji-kr after recompiling 4.6 kernel to have bpf
- 2008-04-23: bon-es extended network problems but Ark automatically recovered
- 2008-04-24: vie-at unclean reboot after Ubuntu upgrade
- · 2008-04-24: updated & restarted bon-es & hel-fi after recompiling 4.6 kernel to have bpf
- 2008-04-25: vie-at clock problem suspending processes
- 2008-04-26: gig-br: TimedSFTP got TypeError
- 2008-04-30: updated & restarted cmn-ma after recompiling 4.6 kernel to have bpf
- 2008-05-01: dub-le high loop rates in Apr 2008 caused by MPLS loops in immediate provider
- 2008-05-01: crap, used "-I 2" and not "-L 1" on dub-ie & vie-at
- 2008-05-08: cmn-ma crashed
- 2008-05-08: seem to have had problems with our CENIC link (or its upstream NLR)
- 2008-05-20 to 21: gap in san-us data collection due to problems with scamper-trunk

- 2008-06-04: bon-es unreachable: earlier switch over to different vian than planned
- 2008-06-05: vie-at unreachable due to routing loop: vie-at power outage
- 2008-06-12: vie-at unreachable
- 2008-06-19: cmn-ma rebooted
- 2008-06-29: vie-at rebooted?
- 2008-06-30: cmn-ma multiple power loss
- 2008-07-01: cmn-ma multiple power loss
- 2008-07-04: vie-at rebooted?
- 2008-07-18: lej-de down -- replacement power supply died
- 2008-07-21: san went down; a few Ark stuff affected but data collection continuing
- 2008-07-23: sjc-us and its net seem to be globally unreachable
- 2008-07-26: cmn-ma crashed/rebooted
- 2008-07-28: yto-ca downloading failed with EOFError exception
- 2008-08-04: gig-br downloading failed with Net::SSH::Disconnect exception
- 2008-08-04: global tuple space messed up (as before?)
- 2008-08-05: vie-at rebooted
- 2008-08-07: cmn-ma unreachable from everywhere but box still up
- 2008-08-13: hiz-nz crashed/rebooted

2008-05-15: 39% packet loss to nr-jp and 32% to mnl-ph for hours 2008-05-18: vie-at unplanned reboot for emergency ssh patching

- 2008-05-24: global tuple space wedged
- 2008-05-29: hiz-nz crashed/rebooted?
- 2008-06-05: cmn-ma unreachable
- 2008-06-13: dub-ie crashed/rebooted

- 2008-07-21: downloading from zrh-ch failed due to unexpected Ermo::ECONNRESET

power fAiLEd

Future Work

* Goals of Ark:

- make it easy to develop and deploy measurements
 easy to use communication and coordination facilities

 Marinda tuple space
 high-level packet generation, capture, and analysis API
 inspiration from Scriptroute, Metasploit, Scapy, Racket

 * allow semi-trusted 3rd parties to conduct measurements

 isolation between users and between measurements
 enforce policies
 - bandwidth usage, destination selection, type of packets

Future Work

* Goals of Ark:

- make it easy to develop and deploy measurements
 easy to use communication and coordination facilities

 Marinda tuple space
 high-level packet generation, capture, and analysis API
 inspiration from Scriptroute, Metasploit, Scapy, Racket

 allow semi-trusted 3rd parties to conduct measurements

 isolation between users and between measurements
 enforce policies
 - bandwidth usage, destination selection, type of packets

Future Work

- * "large-scale" :-) IPv6 topology measurements
 * 5 deployed monitors currently have IPv6 connectivity
 * more coming
- * DNS open resolver surveys?

Thanks!

www.caida.org/projects/ark