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Complex networks

Technological
Internet
Transportation
Power grid

Social
Collaboration
Trust
Friendship

Biological
Gene regulation
Protein interaction
Metabolic
Brain

Can there be anything 
common to all these 
networks???

Naïve answer:
Sure, they must be complex
And probably quite random
But that’s it

Well, not exactly!







Internet

Heterogeneity:
distribution P(k)
of node degrees k:

Real: P(k) ~ k-g

Random: P(k) ~ lke-l/k!

Clustering:
average probability that
node neighbors are connected:

Real: 0.46
Random: 6.8μ10-4



Internet vs. protein interaction



Strong heterogeneity and clustering as 
common features of complex networks

Network Exponent of the
degree distribution

Average 
clustering

Internet 2.1 0.46

Air transportation 2.0 0.62

Actor collaboration 2.3 0.78

Protein interaction 2.4 0.09

Metabolic 2.0 0.67

Gene regulation 2.1 0.09



Any other common features?

Heterogeneity, clustering, some randomness, and 
their consequences:

Small-world effect (prevalence of short paths)
High path diversity (abundance of different paths 
between the same pair of nodes)
Robustness to random breakdowns
Fragility to targeted attacks
Modular/hierarchical organization

pretty much exhaust all the commonalities—the 
networks are quite different and unique in all other 
respects
Can we explain these two fundamental common 
features, heterogeneity and clustering?



Hidden metric space explanation

All nodes exist in a metric space
Distances in this space abstract node 
similarities

More similar nodes are closer in the space
Network consists of links that exist with 
probability that decreases with the hidden 
distance

More similar/close nodes are more likely to be 
connected



Mathematical perspective:
Graphs embedded in manifolds

All nodes exist in “two places at once”:
graph
hidden metric space, e.g., a Riemannian manifold

There are two metric distances between each 
pair of nodes: observable and hidden:

hop length of the shortest path in the graph
distance in the hidden space



Hidden space visualized



Hidden metric spaces explain the 
complex network structure

Clustering is a consequence of the metric 
property of hidden spaces
Heterogeneity is a consequence of their 
negative curvature (hyperbolic geometry) 



Hidden metric spaces explain the 
complex network function

Transport or signaling to specific destinations is 
a common function of many complex networks:

Transportation
Internet
Brain
Regulatory networks

But in many networks, nodes do not know the 
topology of a network, its complex maze



Complex networks
as complex mazes

To find a path through a 
maze is relatively easy if 
you have its plan
Can you quickly find a 
path if you are in the maze 
and don’t have its plan?
Only if you have a 
compass, which does not 
lead you to dead ends
Hidden metric spaces are 
such compasses



Milgram’s experiments

Settings: random people were asked to forward a 
letter to a random individual by passing it to their 
friends who they thought would maximize the 
probability of letter moving “closer” to the 
destination
Results: surprisingly many letters (30%) reached 
the destination by making only ~6 hops on 
average
Conclusion:

People do not know the global topology of the human 
acquaintance network
But they can still find (short) paths through it



Navigation by greedy routing

To reach a destination, each node forwards 
information to the one of its neighbors that 
is closest to the destination in the hidden 
space



Hidden space visualized



Result #1:
Hidden metric spaces do exist

Their existence appears as the only 
reasonable explanation of one peculiar 
property of the topology of real complex 
networks – self-similarity of clustering

Phys Rev Lett, v.100, 078701, 2008



Result #2:
Complex network topologies are navigable

Specific values of degree distribution and 
clustering observed in real complex 
networks correspond to the highest 
efficiency of greedy routing
Which implicitly suggests that complex 
networks do evolve to become navigable
Because if they did not, they would not be 
able to function

Nature Physics, v.5, p.74-80, 2009



Real networks are navigable



Result #3:
Successful greedy paths are shortest

Regardless the structure of the hidden 
space, complex network topologies are 
such, that all successful greedy paths are 
asymptotically shortest
But: how many greedy paths are successful 
does depend on the hidden space geometry

Phys Rev Lett, v.102, 058701, 2009 



Result #4:
In hyperbolic geometry, all paths are successful

Greedy routing in complex networks, including the 
real AS Internet, embedded in hyperbolic spaces, is 
always successful and always follows shortest paths
Even if some links are removed, emulating topology 
dynamics, greedy routing finds remaining paths if 
they exist, without recomputation of node coordinates
The reason is the exceptional congruency between 
complex network topology and hyperbolic geometry  



Result #5:
Emergence of topology from geometry

The two main properties of complex 
network topology are direct consequences 
of the two main properties of hyperbolic 
geometry:

Scale-free degree distributions are a 
consequence of the exponential expansion of 
space in hyperbolic geometry
Strong clustering is a consequence of the fact 
that hyperbolic spaces are metric spaces

Phys Rev E, v.80, 035101(R), 2009 



Motivation for hyperbolic spaces 
under complex networks

Nodes in complex networks can often be 
hierarchically classified

Community structure (social and biological networks)
Customer-provider hierarchies (Internet)
Hierarchies of overlapping balls/sets (all networks)

Hierarchies are (approximately) trees
Trees embed almost isometrically in hyperbolic 
spaces



Mapping between balls B(x,r) in d

and points α = (x,r) in d+1

If |α-α'| § C, then 
there exist k(C) s.t.
k-1 § r/r' § k and 
|x-x'| § k r
If |x-x'| § k r and
k-1 § r/r' § k, then 
there exist C(k) s.t. 
|α-α'| § C



Metric structure of hyperbolic spaces

The volume of balls and surface of spheres grow 
with their radius r as

eαr

where α = (–K)1/2(d–1), K is the curvature and d is 
the dimension of the hyperbolic space
The numbers of nodes in a tree within or at r hops 
from the root grow as

br

where b is the tree branching factor
The metric structures of hyperbolic spaces and 
trees are essentially the same (α = ln b)



Hidden space in our model:
hyperbolic disc

Hyperbolic disc of radius R, where
N = c eR/2, N is the number of nodes in the 
network and c controls its average degree
Curvature K = -1



Node distribution in the disc:
uniform

Uniform angular density
rq(q) = 1/(2p)

Exponential radial density
r(r) = sinh r / (cosh R – 1) ≈ er-R



Connection probability:
step function

Connected each pair nodes located at (r,q) 
and (r',q'), if the hyperbolic distance x
between them is less than or equal to R, 
where

cosh x = cosh r cosh r' - sinh r sinh r' cos Dq



Average node degree at distance r
from the disc center



Average node degree at distance r
from the disc center

Terse but exact expression

Simple approximation:
k(r) ≈ (4c/p) e(R-r)/2



Degree distribution

Since r(r) ~ er and k(r) ~ e-r/2,
P(k) = r[r(k)] |r'(k)| ~ k-3

Power-law degree distribution naturally 
emerges as a simple consequence of the 
exponential expansion of hyperbolic space



Generalizing the model

Curvature
K = -z2

and node density:
r(r) ≈ a ea(r-R)

lead to the average degree at distance r
k(r) ~ e-zr/2 if a/z ¥ 1/2; or
k(r) ~ e- ar/2 otherwise



Generalized degree distribution

Degree distribution
P(k) ~ k-g

where
g = 2 a/z + 1 if a/z ¥ 1/2
g = 2 otherwise

Uniform node density (a = z) yields g = 3 as 
in the standard preferential attachment 



Node degree distribution:
theory vs. simulations



The other way around

We have shown that scale-free topology 
naturally emerges from underlying 
hyperbolic geometry
Now we will show that hyperbolic 
geometry naturally emerges from scale-free 
topology



The 1 model

The hidden metric space is a circle of radius
N/(2p)

The node density is uniform (=1) on the circle
Nodes are assigned an additional hidden variable 
k, the node expected degree, drawn from

rk(k) = (g-1)k-g
To guarantee that k(k) = k, the connection 
probability must be an integrable function of

c ~ NDq /(kk')
where Dq is the angle between nodes, and k, k' are 
their expected degrees



The 1-to-2 transformation

Formal change of variables
k = ez(R-r)/2 (cf. k(r) ~ e-zr/2 in 2)
where
z/2 = a/(g-1) (cf. g = 2 a/z + 1 in 2)
yields density
r(r) = a ea(r-R) (as in 2)
and the argument of the connection probability

c = ez(x-R)/2

where
x = r + r' + (2/z) ln(Dq/2)

is approximately the hyperbolic distance between 
nodes on the disc



Fermi connection probability

Connection probability can be any function of c
Selecting it to be 1 / (1 +  c1/T), T ¥ 0, i.e.,

p(x) = 1 / (1 + ez(x-R)/(2T))
allows to fully control clustering between its 
maximum at T = 0 and zero at T = 1
At T = 0, p(x) = Q(R-x), i.e., the step function
At T = 1 the system undergoes a phase transition, 
and clustering remains zero for all T ¥ 1
At T = ¶ the model produces classical random 
graphs, as nodes are connected with the same 
probability independent of hidden distances



Physical interpretation

Hyperbolic distances x are energies of 
corresponding links-fermions
Hyperbolic disc radius R is the chemical 
potential
Clustering parameter T is the system 
temperature
Two times the inverse square root of 
curvature 2/z is the Boltzmann constant



Hyperbolic embedding
of real complex networks

Measure the average degree, degree 
distribution exponent, and clustering in a 
real network
Map those to the three parameters in the 
model (c, a/z, T)
Use maximum-likelihood techniques (e.g., 
the Metropolis-Hastings algorithm) to find 
the hyperbolic node coordinates





Navigation in 1 and 2

The 1 and 2 models 
are essentially 
equivalent in terms of 
produced network 
topologies
But what distances, 1 

or 2, should we use to 
navigate the network?
Successful greedy paths 
are asymptotically 
shortest
But what about success 
ratio?

Embedded 
Internet

Synthetic 
networks

1 76% § 70%
2 95% § 100%



Visualization of a modeled network



Successful greedy paths



Unsuccessful greedy paths



Robustness of greedy routing in 2

w.r.t. topology perturbations

As network topology changes, the greedy 
routing efficiency deteriorates very slowly
For example, for synthetic networks with 
g § 2.5, removal of up to 10% of the links 
from the topology degrades the percentage 
of successful path by less than 1%



Why navigation in 2

is better than in 1 

Because nodes in the 1 model are not connected 
with probability which depends solely on the 1 

distances NDq
Those distances are rescaled by node degrees to
c ~ NDq /(kk'), and we have shown that these 
rescaled distances are essentially hyperbolic if 
node degrees are power-law distributed
Intuitively, navigation is better if it uses more 
congruent distances, i.e., those with which the 
network is built
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Shortest paths in scale-free graphs 
and hyperbolic spaces





In summary

Hidden hyperbolic metric spaces explain, simultaneously, the 
two main topological characteristics of complex networks

scale-free degree distributions (by negative curvature)
strong clustering (by metric property)

Complex network topologies are congruent with hidden 
hyperbolic geometries

Greedy paths follow shortest paths that approximately follow shortest 
hidden paths, i.e., geodesics in the hyperbolic space

Both topology and geometry are tree-like
This congruency is robust w.r.t. topology dynamics

There are many link/node-disjoint shortest paths between the same source 
and destination that satisfy the above property

Strong clustering (many by-passes) boosts up the path diversity
If some of shortest paths are damaged by link failures, many others 
remain available, and greedy routing still finds them 



Conclusion

To efficiently route without topology 
knowledge, the topology should be both 
hierarchical (tree-like) and have high path 
diversity (not like a tree)
Complex networks do borrow the best out of 
these two seemingly mutually-exclusive worlds
Hidden hyperbolic geometry naturally explains 
how this balance is achieved



Applications

Greedy routing mechanism in these settings may 
offer virtually infinitely scalable information 
dissemination (routing) strategies for future 
communication networks

Zero communication costs (no routing updates!)
Constant routing table sizes (coordinates in the space)
No stretch (all paths are shortest, stretch=1)

Interdisciplinary applications
systems biology: brain and regulatory networks, cancer 
research, phylogenetic trees, protein folding, etc.
data mining and recommender systems
cognitive science
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