Hyperbolic geometry of complex networks

Dmitri Krioukov
CAIDA/UCSD
dima@caida.org
F. Papadopoulos, M. Boguñá,
A. Vahdat, and kc claffy
Complex networks

- Technological
 - Internet
 - Transportation
 - Power grid
- Social
 - Collaboration
 - Trust
 - Friendship
- Biological
 - Gene regulation
 - Protein interaction
 - Metabolic
 - Brain

Can there be anything common to all these networks???

Naïve answer:
- Sure, they must be complex
- And probably quite random
- But that’s it

Well, not exactly!
Internet

- **Heterogeneity:**
 - distribution $P(k)$ of node degrees k:
 - Real: $P(k) \sim k^{-\gamma}$
 - Random: $P(k) \sim \lambda^k e^{-\lambda/k}$

- **Clustering:**
 - average probability that node neighbors are connected:
 - Real: 0.46
 - Random: 6.8×10^{-4}
Internet vs. protein interaction
Strong heterogeneity and clustering as common features of complex networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Exponent of the degree distribution</th>
<th>Average clustering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>2.1</td>
<td>0.46</td>
</tr>
<tr>
<td>Air transportation</td>
<td>2.0</td>
<td>0.62</td>
</tr>
<tr>
<td>Actor collaboration</td>
<td>2.3</td>
<td>0.78</td>
</tr>
<tr>
<td>Protein interaction</td>
<td>2.4</td>
<td>0.09</td>
</tr>
<tr>
<td>Metabolic</td>
<td>2.0</td>
<td>0.67</td>
</tr>
<tr>
<td>Gene regulation</td>
<td>2.1</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Any other common features?

- Heterogeneity, clustering, some randomness, and their consequences:
 - Small-world effect (prevalence of short paths)
 - High path diversity (abundance of different paths between the same pair of nodes)
 - Robustness to random breakdowns
 - Fragility to targeted attacks
 - Modular/hierarchical organization

- pretty much exhaust all the commonalities—the networks are quite different and unique in all other respects

- Can we explain these two fundamental common features, heterogeneity and clustering?
Hidden metric space explanation

- All nodes exist in a metric space
- Distances in this space abstract node similarities
 - More similar nodes are closer in the space
- Network consists of links that exist with probability that decreases with the hidden distance
 - More similar/close nodes are more likely to be connected
Mathematical perspective: Graphs embedded in manifolds

- All nodes exist in “two places at once”:
 - graph
 - hidden metric space, e.g., a Riemannian manifold

- There are two metric distances between each pair of nodes: observable and hidden:
 - hop length of the shortest path in the graph
 - distance in the hidden space
Hidden space visualized

Observable network topology

Hidden metric space
Hidden metric spaces explain the complex network structure

- **Clustering** is a consequence of the metric property of hidden spaces.
- **Heterogeneity** is a consequence of their negative curvature (hyperbolic geometry).
Hidden metric spaces explain the complex network function

- **Transport** or **signaling** to specific destinations is a common function of many complex networks:
 - Transportation
 - Internet
 - Brain
 - Regulatory networks

- But in many networks, nodes do not know the topology of a network, its complex maze
Complex networks as complex mazes

- To find a path through a maze is relatively easy if you have its plan.
- Can you quickly find a path if you are in the maze and don’t have its plan?
- Only if you have a compass, which does not lead you to dead ends.
- Hidden metric spaces are such compasses.
Milgram’s experiments

- **Settings:** random people were asked to forward a letter to a random individual by passing it to their friends who they thought would maximize the probability of letter moving “closer” to the destination.

- **Results:** surprisingly many letters (30%) reached the destination by making only ~6 hops on average.

- **Conclusion:**
 - People do not know the global topology of the human acquaintance network.
 - But they can still find (short) paths through it.
Navigation by greedy routing

To reach a destination, each node forwards information to the one of its neighbors that is closest to the destination in the hidden space.
Result #1:
Hidden metric spaces do exist

Their existence appears as the only reasonable explanation of one peculiar property of the topology of real complex networks – self-similarity of clustering

Result #2: Complex network topologies are navigable

- Specific values of degree distribution and clustering observed in real complex networks correspond to the highest efficiency of greedy routing.
- Which implicitly suggests that complex networks do evolve to become navigable.
- Because if they did not, they would not be able to function.

Nature Physics, v.5, p.74-80, 2009
Real networks are navigable
Result #3: Successful greedy paths are shortest

- Regardless the structure of the hidden space, complex network topologies are such, that all successful greedy paths are asymptotically shortest.
- But: how many greedy paths are successful does depend on the hidden space geometry.

Phys Rev Lett, v.102, 058701, 2009
Result #4:
In hyperbolic geometry, all paths are successful

- Greedy routing in complex networks, including the real AS Internet, embedded in hyperbolic spaces, is always successful and always follows shortest paths
- Even if some links are removed, emulating topology dynamics, greedy routing finds remaining paths if they exist, without recomputation of node coordinates
- The reason is the exceptional congruency between complex network topology and hyperbolic geometry
Result #5: Emergence of topology from geometry

The two main properties of complex network topology are direct consequences of the two main properties of hyperbolic geometry:

- Scale-free degree distributions are a consequence of the exponential expansion of space in hyperbolic geometry.
- Strong clustering is a consequence of the fact that hyperbolic spaces are metric spaces.

Phys Rev E, v.80, 035101(R), 2009
Motivation for hyperbolic spaces under complex networks

- Nodes in complex networks can often be hierarchically classified
 - Community structure (social and biological networks)
 - Customer-provider hierarchies (Internet)
 - Hierarchies of overlapping balls/sets (all networks)
- Hierarchies are (approximately) trees
- Trees embed almost isometrically in hyperbolic spaces
Mapping between balls $B(x,r)$ in \mathbb{R}^d and points $\alpha = (x,r)$ in \mathbb{H}^{d+1}

- If $|\alpha - \alpha'| \leq C$, then there exist $k(C)$ s.t. $k^{-1} \leq r/r' \leq k$ and $|x-x'| \leq kr$.
- If $|x-x'| \leq kr$ and $k^{-1} \leq r/r' \leq k$, then there exist $C(k)$ s.t. $|\alpha - \alpha'| \leq C$.
Metric structure of hyperbolic spaces

- The volume of balls and surface of spheres grow with their radius r as $e^{\alpha r}$
 where $\alpha = (-K)^{1/2}(d-1)$, K is the curvature and d is the dimension of the hyperbolic space.

- The numbers of nodes in a tree within or at r hops from the root grow as b^r
 where b is the tree branching factor.

- The metric structures of hyperbolic spaces and trees are essentially the same ($\alpha = \ln b$).
Hidden space in our model: hyperbolic disc

- Hyperbolic disc of radius R, where $N = c \ e^{R/2}$, N is the number of nodes in the network and c controls its average degree.
- Curvature $K = -1$
Node distribution in the disc: uniform

- **Uniform angular density**
 \[\rho_{\theta}(\theta) = \frac{1}{2\pi} \]

- **Exponential radial density**
 \[\rho(r) = \frac{\sinh r}{(\cosh R - 1)} \approx e^{r-R} \]
Connection probability: step function

- Connected each pair nodes located at \((r, \theta)\) and \((r', \theta')\), if the hyperbolic distance \(x\) between them is less than or equal to \(R\), where

\[
cosh x = \cosh r \cosh r' - \sinh r \sinh r' \cos \Delta \theta
\]
Average node degree at distance r from the disc center
Average node degree at distance r from the disc center

Terse but exact expression

$$k(r) = \delta \left\{ (\cosh R - 2)\pi + 2 \left(\cosh \chi \arccos \frac{\cosh r \cosh \chi - \cosh R}{\sinh r \sinh \chi} \right) \\
+ \cosh R \arctan \left(\frac{\cosh \chi - \cosh R \cosh r}{\sqrt{(\cosh r - \cosh(R - \chi))(\cosh(R + \chi) - \cosh r)}} \right) \\
- \arctan \left(\frac{8(\cosh r - \cosh R \cosh \chi)\sqrt{(\cosh r - \cosh(R - \chi))(\cosh(R + \chi) - \cosh r)}}{16(\cosh r - \cosh R \cosh \chi) \cosh r - 8 \cosh^2 r + 4(\cosh^2 R + \cosh^2 R \cosh^2 \chi + \cosh^2 \chi) - 1} \right) \right\}$$

Simple approximation:

$$k(r) \approx \left(\frac{4c}{\pi} \right) e^{(R-r)/2}$$
Degree distribution

- Since $\rho(r) \sim e^r$ and $k(r) \sim e^{-r/2}$,

 $$P(k) = \rho[r(k)] |r'(k)| \sim k^{-3}$$

- Power-law degree distribution naturally emerges as a simple consequence of the exponential expansion of hyperbolic space
Generalizing the model

- **Curvature**
 \[K = -\xi^2 \]

- and node density:
 \[\rho(r) \approx \alpha e^{\alpha (r-R)} \]

- lead to the average degree at distance \(r \)
 \[k(r) \sim e^{-\xi r/2} \quad \text{if } \alpha/\xi \geq 1/2; \text{ or} \]
 \[k(r) \sim e^{-\alpha r/2} \quad \text{otherwise} \]
Generalized degree distribution

- Degree distribution
 \[P(k) \sim k^{-\gamma} \]
- where
 \[\gamma = 2 \frac{\alpha}{\zeta} + 1 \quad \text{if} \quad \frac{\alpha}{\zeta} \geq 1/2 \]
 \[\gamma = 2 \quad \text{otherwise} \]
- Uniform node density (\(\alpha = \zeta\)) yields \(\gamma = 3\) as in the standard preferential attachment
Node degree distribution: theory vs. simulations

\[P(k) \]

\[k \]

\[\gamma = 2.1 \]

\[\gamma = 3.0 \]
The other way around

- We have shown that scale-free topology naturally emerges from underlying hyperbolic geometry
- Now we will show that hyperbolic geometry naturally emerges from scale-free topology
The S^1 model

- The hidden metric space is a circle of radius $N/(2\pi)$
- The node density is uniform ($=1$) on the circle
- Nodes are assigned an additional hidden variable κ, the node expected degree, drawn from
 \[\rho_\kappa(\kappa) = (\gamma - 1)\kappa^{-\gamma} \]
- To guarantee that $k(\kappa) = \kappa$, the connection probability must be an integrable function of
 \[\chi \sim N\Delta\theta / (\kappa\kappa') \]
- where $\Delta\theta$ is the angle between nodes, and κ, κ' are their expected degrees
The S^1-to-H^2 transformation

- Formal change of variables
 \[\kappa = e^{\zeta (R-r)/2} \]
 (cf. $k(r) \sim e^{-\zeta r/2}$ in H^2)

- where
 \[\zeta/2 = \alpha/((\gamma - 1)) \]
 (cf. $\gamma = 2 \alpha/\zeta + 1$ in H^2)

- yields density
 \[\rho(r) = \alpha e^{\alpha (r-R)} \]
 (as in H^2)

- and the argument of the connection probability
 \[\chi = e^{\zeta (x-R)/2} \]

- where
 \[x = r + r' + (2/\zeta) \ln(\Delta \theta/2) \]
 is approximately the hyperbolic distance between nodes on the disc
Fermi connection probability

- Connection probability can be any function of χ
- Selecting it to be $1 / (1 + \chi^{1/T})$, $T \geq 0$, i.e.,
 $$p(x) = 1 / (1 + e^{\xi(x-R)/(2T)})$$
- Allows to fully control clustering between its maximum at $T = 0$ and zero at $T = 1$
- At $T = 0$, $p(x) = \Theta(R-x)$, i.e., the step function
- At $T = 1$ the system undergoes a phase transition, and clustering remains zero for all $T \geq 1$
- At $T = \infty$ the model produces classical random graphs, as nodes are connected with the same probability independent of hidden distances
Physical interpretation

- Hyperbolic distances x are energies of corresponding links-fermions
- Hyperbolic disc radius R is the chemical potential
- Clustering parameter T is the system temperature
- Two times the inverse square root of curvature $2/\zeta$ is the Boltzmann constant
Hyperbolic embedding of real complex networks

- Measure the average degree, degree distribution exponent, and clustering in a real network
- Map those to the three parameters in the model \((c, \alpha/\zeta, T)\)
- Use maximum-likelihood techniques (e.g., the Metropolis-Hastings algorithm) to find the hyperbolic node coordinates
Navigation in S^I and H^2

- The S^I and H^2 models are essentially equivalent in terms of produced network topologies.
- But what distances, S^I or H^2, should we use to navigate the network?
- Successful greedy paths are asymptotically shortest.
- But what about success ratio?

<table>
<thead>
<tr>
<th></th>
<th>Embedded Internet</th>
<th>Synthetic networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^I</td>
<td>76%</td>
<td>$\leq 70%$</td>
</tr>
<tr>
<td>H^2</td>
<td>95%</td>
<td>$\leq 100%$</td>
</tr>
</tbody>
</table>
Visualization of a modeled network
Successful greedy paths
Unsuccessful greedy paths
Robustness of greedy routing in H^2 w.r.t. topology perturbations

- As network topology changes, the greedy routing efficiency deteriorates very slowly.
- For example, for synthetic networks with $\gamma \leq 2.5$, removal of up to 10% of the links from the topology degrades the percentage of successful path by less than 1%.
Why navigation in H^2 is better than in S^1

- Because nodes in the S^1 model are not connected with probability which depends solely on the S^1 distances $N\Delta \theta$.

- Those distances are rescaled by node degrees to $\chi \sim N\Delta \theta / (\kappa \kappa')$, and we have shown that these rescaled distances are essentially hyperbolic if node degrees are power-law distributed.

- Intuitively, navigation is better if it uses more congruent distances, i.e., those with which the network is built.
Shortest paths in scale-free graphs and hyperbolic spaces
In summary

- Hidden hyperbolic metric spaces explain, simultaneously, the two main topological characteristics of complex networks
 - scale-free degree distributions (by negative curvature)
 - strong clustering (by metric property)
- Complex network topologies are congruent with hidden hyperbolic geometries
 - Greedy paths follow shortest paths that approximately follow shortest hidden paths, i.e., geodesics in the hyperbolic space
 - Both topology and geometry are tree-like
- This congruency is robust w.r.t. topology dynamics
 - There are many link/node-disjoint shortest paths between the same source and destination that satisfy the above property
 - Strong clustering (many by-passes) boosts up the path diversity
 - If some of shortest paths are damaged by link failures, many others remain available, and greedy routing still finds them
Conclusion

- To efficiently route without topology knowledge, the topology should be both hierarchical (tree-like) and have high path diversity (not like a tree)
- Complex networks do borrow the best out of these two seemingly mutually-exclusive worlds
- Hidden hyperbolic geometry naturally explains how this balance is achieved
Applications

- Greedy routing mechanism in these settings may offer virtually infinitely scalable information dissemination (routing) strategies for future communication networks
 - Zero communication costs (no routing updates!)
 - Constant routing table sizes (coordinates in the space)
 - No stretch (all paths are shortest, stretch=1)

- Interdisciplinary applications
 - systems biology: brain and regulatory networks, cancer research, phylogenetic trees, protein folding, etc.
 - data mining and recommender systems
 - cognitive science