AN INTERNET DATA SHARING FRAMEWORK FOR BALANCING PRIVACY AND UTILITY

Erin Kenneally, M.F.S., J.D. kc Claffy, Ph.D.

Cooperative Association for Internet Data Analysis University of California San Diego

Engaging Data | MIT | 12 October 2009

- Defining the Issue & Solution Space
- Value Proposition of PS2
- Challenges & Motivations
 - Uncertain Legal Regime
 - Incomplete Technology Solution Models
 - Privacy Risks
 - Under-valued Benefits of Network Measurement Research
- PS2 Framework
 - Policy Component
 - Technology Component
 - Implementation Vehicles
- Evaluating PS2

- Privacy Risk Coverage
- Utility Goals Coverage

The Issue Space Defining the Solution

- Issue Space
 - Current posture:
 - defensive, default-deny sharing network traffic data
 - (Misinformed) assumptions:
 - Privacy risks and legal restrictions >>> benefits of sharing
 - Unprecedented data availability = plethora of network infrastructure information
 - ISE directives post-911 → incent network data exchange
 - Muted legislative, judicial, policy drivers
 - Threat model from NOT sharing data = vague
 - No body count / \$billion losses (at least no explicit, causal)
 - No widespread, standard procedures for exchange
 - Ad-hoc, nod & wink
 - Dynamic and normative-deficient understanding of privacy risk and research utility
 - No cost-accounting for privacy risk
 - No ROI for investment in empirical network measurement
 - Bright side of confusion = window of opportunity

(C) 2009 CAIDA | Kenneally

Value Proposition of PS2

- Privacy-Sensitive Sharing (PS2) model solution
 - = Privacy-enhancing technology + privacy-principled policies
- Risk Benefit methodology
- Bridges risk utility perception gap
- Enables transparency as touchstone of data sharing
- counter to subjective, opaque evaluations
- Engender trust, beyond "trust me"
- Considers practical challenges of stakeholders (network researchers, sys operators, security professionals, legal advisors, policymakers)
- Proactive, 'self-regulation'
- Bottom-up regime
- Anchor point to demonstrate community norms, inform law & policy

- No legal framework that explicitly prescribes, incentivizes, or forbids sharing of network data for security research
- Linguistic ambiguity between tech & legal discourse re: fundamental concepts driving risk
 - PII, Privacy, content, transaction data, URLs, IPAs, packet headers & body
 - Evolving tech increases capabilities and decreases costs of linking network data to individuals
 - Little functional difference between IPA, URL v. other protected PII, but law inconsistent
 - E.g., is IPA 'content' and URL 'addressing' data for ECPA and 4th A. purposes?
 - Johnson v. Microsoft (2008) IPA does not identify persons
 - State v. Reid (2007) REP in subscriber information attached to IPA
 - US v. Forrester (2007) URLs may have REP because reveal communication content
 - HIPAA Privacy Rule IPA is protected PII
 - States' data breach laws IPA is not in definition of personal information
- Social normative expectations: my IPA, URLs + search terms are digital fingerprints?
 - Witness Tor, automated in-browser cookie and URL deletion

Challenges & Motivations (2) Incomplete Technology Solution Models

- Point solutions fail to address context-dependent risks
 - Cases-in-point: de-anonymization attacks success
 - Prefix-preserving anonymization subject to re-identification
 - Poster cases
 - Netflix
 - Yahoo!
 - Traffic injection attacks
- Purely technical approaches necessarily impact research utility goals (analysis)
 - Data minimization techniques intentionally obfuscate essential data (network management, countering security threats, evaluating algorithms, apps, architectures)
 - E.g., Conficker

Challenges & Motivations (3) Privacy Risks

- Derive from legal liabilities, ethical obligations, norms/court of public opinion
- 2 main categories
 - Disclosure risk
 - Public disclosure
 - Accidental/malicious disclosure
 - Compelled disclosure (e.g., RIAA subpoenas)
 - Government disclosure (e.g., NSA wiretapping, Telco releases)
 - Misuse risk
 - False inference (synthesizing 1st/2nd order identifiers to draw inferences about persons behavior, identity with damaging implications)
 - Network topology confidentiality
 - Re-identification/de-anonymization
 * increasing quantitatively & qualitatively
 - Cat & mouse game will drive commoditization of de-anon techniques
 - Pressure to protect (law, policy) AND motivation to uncover PII (profit, avoid legal liability triggers, attribution)
 - Law enforcement investigations, biz intel, legal dispute resolution, security incident response

Challenges & Motivations (4) Under-valued Benefits of Network Research

- Benefits:
 - Understanding structure, function of critical Internet infrastructure
 - (topology, workload, traffic routing, performance, threats & vulnerabilities)
- Network Data sharing utility criteria
 - Objective for sharing is positively related to social welfare
 - Need for empirical research
 - Research purpose not being conducted
 - Research could not be conducted without the shared data
 - No sufficiently similar data already being collected that could be shared
 - Research & peer reviewed methods using shared data are as transparent, objective, scientific and control for privacy risk
 - Results using shared data can be acted upon meaningfully
 - Results using shared data are capable of being integrated into operational or biz processes (security improvements, situational awareness)

- Core underpinnings:
 - privacy risks are `contagious' (sharing= data AND responsibilities & obligations)
 - Components rooted in principles and practices of national & global laws, policies
 - **1**. Authorization
 - **2.** Transparency
 - 3. Compliance with applicable laws
 - **4**. Purpose adherence
 - 5. Access limitations
 - 6. Use specifications and limitations
 - 7. Redress mechanisms
 - 8. Oversight
 - 9. Security
 - **10**.Audit tools
 - 11. Data quality assurances
 - **12**.Training
 - **13**. Transfer to 3rd parties
 - 14. Ethical impact assessment
 - **15** Disclosure minimization

PS2 Framework Technology Component

- Disclosure Minimization/Controls
 - a) Deleting all sensitive data
 - b) Deleting part(s) of sensitive data
 - c) Anonymizing/de-identifying all or parts of sensitive data
 - d) Aggregation or sampling techniques
 - e) Mediation techniques (sending code-to-data)
 - f) Aging the data
 - g) Limiting quantity of data
 - h) Layering anonymization
- Vehicles for Implementing PS2:
 - enforcement via MOU/MOA, model contracts, binding organizational policy, NDA

Evaluating PS2 Addressing Privacy Risk & Utility Goals

Criteria:

- 1. How well PS2 addresses privacy risks (table 1)
 - Policy control components, alone, leave coverage gaps
 - Technical controls, alone, seemingly control for privacy risks (implying policy control components superfluous)
- 2. To what extent PS2 impedes utility goal (table 2)
 - Technical controls, alone, leave impedes utility
- Conclusion:
 - Singular tech solution breaks down along utility dimension
 - Singular policy solution leaves too high privacy risk exposure
 - Therefore, hybrid strategy allows tuning down technical controls to achieve utility objectives AND supplementing policy controls with preventative technical controls
 - Framework is both
 - Evaluation of hybrid model
 - Possible self-assessment tool for data sharing

(C) 2009 CAIDA | Kenneally

Evaluating PS2 Addressing Privacy Risk & Utility Goals

PS2 / Privacy Risk	Public Disclosure	Compelled Disclosure	Malicious Disclosure	Government Disclosure	Misuse	Inference Risk	Re-ID Risk	
Authorization		X	X		Х	X	Х	
Transparency	X	X	X	X	Х			
Law Compliance			Х			X	Х	
Access Limitation		Х			Х	X	Х	
Use Specification		Х	X		Х	X		
Minimization							X	N
Audit Tools	Х	Х	Х	Х	Х	Х	X	
Redress	X	X	Х	X	Х	X	X	
Oversight		Х	Х			Х	Х	
Data Quality	X	Х	Х	Х			Х	
Security		X				Х	Х	
Training/Education		Х	Х			X	Х	
Impact Assessment	X	X	Х	х	Х			

Table 1: Privacy risks evaluated against the PS2 privacy protection components. (*Minimization* refers to the techniques evaluated in Table 1...)

Min. Tech. / Utility	Is Purpose Worthwhile?	Is there a need?	Is it already being done?	Are there alternatives?	Is there a scientific basis?	Can results be acted upon?	Can DS & DP implement?	Reasonable education costs?	Forward & backward controls?	No new privacy risks created?	No free rider problem created?
Not Sharing	х	х	Х	х	Х	Х	X				
Delete All	Х	х	х	х	х	Х	X		х		
Delete Part	х	х		х	х		Х		х	X	
	120	192	192	Х	12		X	X	Х	X	
Anonymize	Х	Х	Х	.	Х		$ \Lambda $	$ \mathbf{n} $	n.	լ.ո.	
Anonymize Aggregate	X	л Х	A X	л Х	л Х		л	л	л Х	X	
	X X	x	X	x	х		x	л Х		x	x
Aggregate	X X X									x x	X
Aggregate Mediate (SC2D)	X X	x	X	x	х	x	x			x	x

Table 2: PS2 minimization (of collection and disclosure) techniques evaluated against utility.

Bigger Picture:

Infosec controls evolved : financial liability ---> compliance necessity PS2 value prop : regime where NOT sharing data ---> liability

go raibh maith agat

erin@caida.org

