dK-series
and hidden hyperbolic metric spaces

Dmitri Krioukov
dima@caida.org
A. Jamakovic, P. Mahadevan, F. Papadopoulos,
K. Fall, A. Vahdat, and M. Boguña

Telefonica, June 26th, 2009
Motivation: topology analysis and generation

- New routing and other protocol design, development, testing, etc.
 - Analysis: performance of a routing algorithm strongly depends on topology, the recent progress in routing theory has become topology analysis
 - Generation: empirical estimation of scalability: new routing might offer X-time smaller routing tables for today but scale Y-time worse, with $Y \gg X$

- Network robustness, resilience under attack, worm spreading, etc.
- Traffic engineering, capacity planning, network management, etc.
- Motifs: are they really functional building blocks?
- In general: local vs. global network properties, network structure vs. function, and “what if” scenarios, better predictive power
Network topology research

- Topology
- Measurements, observations
 - Observed graphs
 - Extraction
 - Graph metrics to reproduce
 - Construction
 - Synthetic ‘static’ graphs
 - If graphs differ, refinements are needed: modify the set of reproduced graph metrics (on the left) or abstracted evolution rules (on the right)
- Processes
 - Selection and abstraction
 - Formalization
 - Network evolution modeling
 - Execution
 - Synthetic ‘growing’ graphs

Comparison with the observed graphs against a set of important graph properties

Simulations
Important topology metrics

- Spectrum
- Distance distribution
- Betweenness distribution
- Community structure
- Motif distribution
- Degree distribution
- Assortativity
- Clustering
Problems

- No way to reproduce most of the important metrics simultaneously
- No guarantee there will not be any other/new metric found important
Our approach

- Look at inter-dependencies among topology characteristics
- See if by reproducing most basic, simple, but not necessarily practically relevant characteristics, we can also reproduce (capture) all other characteristics, including practically important
- Try to find the one(s) defining all others
Outline

- Introduction
- dK-*:
 - dK-distributions
 - dK-series
 - dK-graphs
 - dK-randomness
 - dK-generator (Orbis)
- dK-randomness of real networks
- Hidden hyperbolic metric spaces as an explanation
- Conclusion
The main observation 😊

Graphs are structures of *connections*
between nodes
dK-distributions as a series of graphs’ *connectivity* characteristics
Average degree $<k>$
Degree distribution $P(k)$
Joint degree distribution $P(k_1, k_2)$
“Joint edge degree” distribution $P(k_1,k_2,k_3)$
3K, more exactly

Wedges: $P_w(k_1, k_2, k_3)$

Triangles: $P_t(k_1, k_2, k_3)$
$4K$

$P_1(k_1, k_2, k_3, k_4)$

$P_2(k_1, k_2, k_3, k_4)$

$P_3(k_1, k_2, k_3, k_4)$

$P_4(k_1, k_2, k_3, k_4)$

$P_5(k_1, k_2, k_3, k_4)$

$P_6(k_1, k_2, k_3, k_4)$
Definition of dK-distributions

dK-distributions are degree correlations within simple connected graphs of size d
dK-decomposition example

$N_4(3,2,1,2)=1 \quad N_t(2,2,3)=1 \quad N(2,2)=1 \quad N(1)=1 \quad k=2$

$N_w(2,3,1)=2 \quad N(2,3)=2 \quad N(2)=2$

$N(1,3)=1 \quad N(3)=1$
Definition of dK-series P_d

Given some graph G, graph G' is said to have property P_d if G'''s dK-distribution is the same as G's.
Definition of dK-graphs

dK-graphs are graphs having property P_d
Nice properties of properties P_d

- **Inclusiveness:** if a graph has property P_d, then it also has all properties P_i, with $i < d$ (dK-graphs are also iK-graphs)

- **Convergence:** the set of graphs having property P_n consists of only one element, G itself (dK-graphs converge to G)

- **Constructability:** we can construct graphs having properties P_d (dK-graphs)
Convergence…

…guarantees that all (even not yet defined!) graph metrics can be captured by sufficiently high d
Inclusiveness and convergence
\textit{dK-random graphs vs. dK-graphs}

- \textit{dK-graph} is a graph that has the same \textit{dK}-distribution as a given graph \(G\) (\textit{strict definition})

- \textit{dK-random graph} is a “maximally random” \textit{dK}-graph (\textit{non-strict definition}, but very useful in practice)
 - \textit{dK-random graph} is a graph that has the same \textit{dK}-distribution as \(G\) but that is random in other respects
 - constructing \textit{dK-graphs}, we usually construct \textit{dK-random graphs}
 - to construct \textit{dK-non-random graphs}, we have to inventively modify the construction procedures…
dK-randomization: random rewiring preserving the *dK*-distribution

- *dK*-randomizing a given graph *G*, we obtain its *dK*-random counterparts
- These *dK*-random graphs are always similar to each other
- Graph *G* itself is called *dK*-random if it’s similar to its *dK*-random counterparts
dK-generator (Orbis)

- Establish how \(dK\)-random a given network \(G\) is, i.e., find the minimum \(d\) s.t. \(G\) is \(dK\)-random.

- Given a \(dK\)-distribution (\(G\) no longer needed!), construct \(dK\)-random graphs:
 1. extract the \(1K\)-distribution from the \(dK\)-distribution
 2. construct a \(1K\)-random graph (many methods exist)
 3. done if \(d=1\), or set \(i=2\) otherwise
 4. extract the \(iK\)-distribution from the \(dK\)-distribution
 5. perform \((i-1)K\)-preserving \(iK\)-targeting rewiring, accepting each rewiring step if it moves the graph’s \(iK\)-distribution closer to the target extracted \(iK\)-distribution
 6. done if \(i=d\), or set \(i=i+1\) otherwise and go to step 4
Problem

- Complexity of dK-series grows hyper-exponentially with d – the dominating contribution is from the number of non-isomorphic graphs of size d
- So, how dK-random are real networks???
Outline

- Introduction
- dK-
- dK-randomness of real networks
 - Networks considered
 - Methodology
 - Internet
 - Web of trust
- Hidden hyperbolic metric spaces as an explanation
- Conclusion
Networks considered

- Communication: the Internet
 - AS-level (skitter)
 - “Router”-level (HOT)
- Social:
 - Web of trust (PGP)
 - Paper co-authorship network (arXiv)
- Biological:
 - Protein interactions (yeast *Saccharomyces cerevisiae*)
- Transportation:
 - US airport network
- Technological:
 - Western US power grid
- Few others
 - including a dolphin acquaintance network!
Main finding

- All networks are $3K$-random at most
 - AS-level Internet is $1K$-random
 - Airport network is $2K$-random
- Except the power grid
 - Not $3K$-random at all
Methodology

- To show that a network is dK-random, it is sufficient to show that the difference between the $(d+1)K$-distribution in the network and in its dK-randomizations is statistically nonsignificant
 - We compute the statistical significance of motifs of size 4
- Just for fun, we also compute many other metrics and compare them between the network and its dK-randomizations
 - microscopic (degree distribution, correlations, clustering; motifs belong here, too)
 - mesoscopic (community structure)
 - macroscopic (distance and betweenness distributions)
Internet AS-level (skitter): average neighbor degree
Internet “router”-level (HOT): degree-dependent betweenness
HOT dK-porn
PGP dK-porn
Web of trust (PGP): motifs of size 4
Outline

- Introduction
- dK-
- dK-randomness of real networks
- Hidden hyperbolic metric spaces as an explanation
 - Hidden metric spaces and clustering
 - Hidden hyperbolic spaces and degree distribution
 - Degree distribution \cup clustering $\subset 3K$-distribution
- Conclusion
Observable network topology

Hidden metric space
Hidden hyperbolic spaces
Plausible explanation of ubiquitous $3K$-randomness

- The two main geometric properties of hidden spaces, metric structure, and negative curvature, explain the two main topological properties of complex networks, strong clustering, and power-law degree distributions.
- Both are captured by the $3K$-distribution.
Outline

- Introduction
- dK*
- dK-randomness of real networks
- Hidden hyperbolic metric spaces as an explanation
- Conclusion
 - Take-home message
 - Implications
 - Speculations
Take-home message

- A majority of complex networks are $3K$-random at most
Implications

- Orbis is practically applicable not only to the Internet, but to many other networks as well.

- Network evolution models and laws need not try to reproduce and explain the emergence of an endless list of metrics, but just the $3K$-distribution.
 - Perhaps just the degree distribution and clustering.

- Connection between network structure and function does not go via motifs.
 - As soon as randomization basis is $3K$, all motifs are statistically non-significant.
Speculations

- Many networks are $3K$-random, but not all, e.g., not the power grid. Why?
 - Unlikely because it is planar and spatially embedded
 - The airport network and the Internet are also spatially embedded, and the latter is even $1K$-random
 - More likely because it is a designed, engineered network, fully controlled by humans
 - As such it has lots of constraints, imposed by humans, that dK-series with low d cannot capture
 - It is good that we found a non-$3K$-random network, since it shows that “$d=3$ is just too constraining” is not a satisfactory explanation of ubiquitous $3K$-randomness

- All self-evolving networks appear not to have any constraints other than hidden hyperbolic metric spaces