
Internet-Scale
Alias Resolution with MIDAR

Ken Keys Young Hyun

Matthew Luckie

CAIDA

WAND

ISMA 2010 AIMS Workshop
Feb 9, 2010

Introduction

Goal: We want to produce a router-level map of
the Internet using Ark topology data.

We need alias resolution.

Let’s try RadarGun!

promising technique by Adam Bender, et al
• Fixing Ally’s growing pains with velocity modeling (IMC’08)

2

Outline

RadarGun

MIDAR Design

Measurements

Toward MAARS

3

RadarGun

based on a simple observation:

two interfaces belonging to the same router will
respond to probes in a similar way

specifically, IP ID values in response packets can be
used as fingerprints to find aliases
• IP ID is a 16-bit value in the IP header normally used for

packet fragmentation and reassembly

4

RadarGun

assumption: a router uses an incrementing
system-wide counter to generate IP ID values

that is, the router increments the counter whenever it
sends out a packet
• except when merely forwarding packets

therefore:

two interfaces on the same router probed closely in
time will return similar IP ID values

two interfaces on the same router probed repeatedly
over time will return similar time series of IP ID values

5

RadarGun

6

IP ID

time

interface A

RadarGun

6

IP ID

time

interface A

interface B

RadarGun

6

IP ID

time

shared IP-ID counter

interface A

interface B

RadarGun

RadarGun compares the IP-ID time series of two
interfaces to determine whether they share a
counter

• share counter => belong to same router

distance test:

compare the distance between two time series

if distance is “close”, then the interfaces share a
counter

7

Distance Test

8

IP ID

time

interface A

interface B

Distance Test

8

IP ID

time

interface A

interface B
sample
distance

(simplified)

d1

d2

d3
d4
d5

d6

Distance Test

8

IP ID

time

interface A

interface B
sample
distance

(simplified)

d1

d2

d3
d4
d5

d6

distance =
∑di
6

if distance < threshold,
then shared

Distance Test
if distance < 500 IP ID units, then shared counter

RadarGun authors chose a threshold of 500 based on
the distance distribution of alias pairs
• 932 aliases confirmed with Mercator technique

9

Bender, et al.
IMC’08

RadarGun Issues

RadarGun is groundbreaking work but has both
theoretical and practical issues

the distance test for aliases is insufficient
• threshold dependent on underlying dataset

• Bender et al used traceroutes between PlanetLab nodes
• Ark traceroutes are taken to the entire routed space

• distance distribution noticeably different
• threshold doesn’t account for velocity

• RadarGun velocity is the slope of the IP-ID time series
• setting the threshold high enough to allow high-velocity

aliases allows false positives in low-velocity cases
• false positives can exist for any chosen threshold

• even for a very low threshold

10

11

IP ID

time

IP-ID counter
cannot fit sample points
 and still be monotonic;

therefore, these cannot be aliases

RadarGun false positive for any chosen threshold

RadarGun Issues

applying RadarGun to 1 million addresses is
problematic because RadarGun needs overlapping
IP-ID time series for all targets in a short period of
time
• looks like DDoS attack
• triggers rate limiting
• requires high probing rate or large number of machines

12

RadarGun Issues

probing rate must increase if ...

interface set size increases

round duration decreases

13

interface set size

probing rate
round duration=

or

interface set size

round duration
probing rate=

RadarGun Issues

RadarGun’s 35-sec round duration is arbitrary

5 seconds is more appropriate based on the highest
actual velocity in our dataset

RadarGun needs 769 monitors to probe 1M interfaces
with 5-sec duration at 260pps

1 week of Ark traces has 1 million interfaces

expect possibly 2 million in 1 month of traces
• possibly 3 million with more monitors

14

9,056 interfaces

35 sec
260 pps= 1M interfaces

35 sec
28,500 pps=

1M interfaces

5 sec
200,000 pps=

MIDAR

Monotonic ID-Based Alias Resolution (MIDAR) is
our extension of the RadarGun approach

monotonic bounds test for accurate testing of pairs

sliding window for scaling up probing

4 probing methods

multiple monitors

15

False Positives

potential for false positives is high when using IP-ID
time series for alias resolution

IP-ID space has only 216 = 65,536 possibilities

birthday paradox (when number of targets < 216):
• even with just 9,053 targets, the probability of two targets

having the same IP ID value is nearly 1.0
• only takes 302 targets to have 50% chance for same IP ID

pigeonhole principle (when number of targets > 216):
• 1 million targets cannot each have unique IP ID values
• 1 million / 216 = 15 targets per IP ID value on average

even worse: nearby IP ID values can cause false positives

16

False Positives

we compare time series, not just individual sample
points, for alias resolution

however, the potential for false positives is still high
because the velocity distribution of targets is heavily
skewed

not much variability (or entropy) in practice

~80% of targets have velocity of 10 IDs/sec or less

~50% have velocity of 1 IDs/sec or less

17

18

IP ID

time

False Positives

18

IP ID

time

False Positives

similar
starting points

(birthday paradox/pigeonhole)

18

IP ID

time

False Positives

similar
starting points

(birthday paradox/pigeonhole)

similar
velocities
(low variation)

False Positives

an accurate shared counter test is critical

the number of true alias pairs is low
• with N addresses:

• number of true aliases is O(N)
• number of false positives is a fraction of total pairs, or O(N2)

false positives are amplified when combining alias pairs
into routers with transitive closure

19

addrs all pairs true alias pairs1

10k 50M 245k 0.490%

100k 5G 2.5M 0.049%

1M 500G 25M 0.005%

1 alias pairs
extrapolated
from tier 1 ISP

MIDAR

MIDAR uses the monotonic bounds test:

based on a necessary condition, not an arbitrary
threshold

failing the test means definitively “not a shared counter”
• that is, provides negative information
• “not shared” is not as strong as “not alias” but still useful

extremely low false positives when repeated

20

Monotonic Bounds Test
the monotonic bounds test rationale:

if two interfaces use a shared counter for their IP-ID
values, then they are aliases
• the same observation underlying RadarGun
• careful: converse not true; aliases need not share a counter

• so time-series analysis can only detect aliases that share
a counter (which applies to RadarGun & MIDAR equally)

if two interfaces share a counter, then their IP-ID time
series must form a strictly increasing sequence (“must
be monotonic”) when merged together
• therefore, having a monotonic combined time series is a

necessary condition for being a shared counter and thus a
necessary condition for being a detectable alias

21

Monotonic Bounds Test

22

IP ID

time

interface A

Monotonic Bounds Test

22

IP ID

time

interface A

Monotonic Bounds Test

22

IP ID

time

interface A

Monotonic Bounds Test

22

IP ID

time

interface A

Monotonic Bounds Test

22

IP ID

time

interface A

Monotonic Bounds Test

22

IP ID

time

interface A

The underlying IP ID
counter must remain
within these bounds

because it is monotonic.

Monotonic Bounds Test

23

IP ID

time

Monotonic Bounds Test

23

IP ID

time

Monotonic Bounds Test

23

IP ID

time

definitively
not sharing counter

Monotonic Bounds Test

24

IP ID

time

possibly sharing counter
=> possible alias

Monotonic Bounds Test

passing the monotonic bounds test is not a
sufficient condition for sharing a counter

false positives from chance alignment, just as with the
distance test

but crucial point:
• the monotonic bounds test guarantees the necessary

condition for sharing a counter
• we can exploit this guarantee to ensure sufficiency

25

Monotonic Bounds Test

we can improve confidence by repeating the test
at a later time after non-shared counters have had
a chance to diverge

each application of the monotonic bounds test only
removes false positives
• never rejects real aliases (that is, does not create false

negatives)
• so repetition is helpful and never harmful

the test converges quickly and with high confidence to
the set of true positives with repetition
• because the test takes advantage of varying velocities and

probe spacing

26

Monotonic Bounds Test

27

IP ID

time

high velocity

Monotonic Bounds Test

28

IP ID

time

medium velocity

Monotonic Bounds Test

29

IP ID

time

low velocity

Monotonic Bounds Test

30

IP ID

time

high velocity

wide probe spacing

Monotonic Bounds Test

31

IP ID

time

high velocity

narrow probe spacing

Monotonic Bounds Test

the monotonic bounds test is slightly more
complicated in practice

first, exact time of response unknown:

32

monitor

send

receive

response

Monotonic Bounds Test
second, clocks are not perfectly synchronized
across monitors
• only matters when comparing data from multiple monitors

we can accommodate uncertainties in both the
response time and clock offset without
compromising the rigor of the monotonic
bounds test

33

send time receive time

clock error

Monotonic Bounds Test

34

IP ID

time

Monotonic Bounds Test

35

IP ID

time

Monotonic Bounds Test

35

IP ID

time

Monotonic Bounds Test

35

IP ID

time

in bounds

Monotonic Bounds Test

35

IP ID

time

out of bounds

in bounds

Monotonic Bounds Test

35

IP ID

time

out of bounds

in bounds

in bounds

Monotonic Bounds Test

35

IP ID

time

out of bounds

in bounds

in bounds

Monotonic Bounds Test

summary: the monotonic bounds test provides a
high-confidence test of a shared counter, and
ultimately of aliases

based on a necessary condition that ensures
convergence to the true positives
• difference of kind, not just of degree, with RadarGun’s

distance test

very low false positive rate minimizes further errors
caused by taking the transitive closure of alias pairs

36

MIDAR

MIDAR probes with a sliding window for scalability

scales up gracefully
• can accommodate varying numbers of monitors
• use “what you have”, not “what you must have”

reduces chances of rate limiting

we ran MIDAR on 1 million interfaces with just 27
monitors at 100pps/monitor

37

Sliding Window

the sliding window rationale:

two interfaces that share a counter will have similar
time series and thus similar velocities
• that is, interfaces with very different velocities cannot be

shared, and so we do not need to probe such interfaces
closely in time

high velocity targets should be probed with tighter
probe spacing than low velocity targets
• need to reduce the bounds in the monotonic bounds test
• need to be able to detect random IP ID’s

low velocity targets can be probed with wide probe
spacing because their IP-ID counter changes slowly

38

Sliding Window

implementation:

sort targets by descending velocity

set up a window over an initial segment of the target
list

loop:
• probe each address in the window
• slide window forward (to lower velocity targets) by a small

fraction of its size, and increase window size by a small
fraction

39

Sliding Window

40

probing window

time

address index

each row = address set to probe
(only showing 7% of 24k

addresses)

each column = address
over time

Sliding Window

41

probing window

time

address index

each row = address set to probe
(only showing 7% of 24k

addresses)

each column = address
over time

addresses A & B
have similar
velocities, so we
probe them both
over many rounds
(rounds 35 to 80)

Sliding Window

42

probing window

time

address index

each row = address set to probe
(only showing 7% of 24k

addresses)

each column = address
over time

addresses A & C
have different
velocities, so we
probe them both
over only a few
rounds (70 to 80)

Sliding Window

43

probing window

time

address index

each row = address set to probe
(only showing 7% of 24k

addresses)

each column = address
over time

addresses A & D
have very different
velocities, so we
never probe them
in the same window

More Probe Methods
MIDAR uses 4 probing methods:

TCP ACK (same as RadarGun), UDP, ICMP, and indir
• indir reproduces the conditions of the original traceroute

used to obtain an interface address

using additional methods improves response rate

44

methods responsive monotonic
tcp 747,408 66.57% 481,999 42.93%

udp 664,742 59.21% 645,103 57.46%
icmp 953,562 84.94% 390,827 34.81%

indir 973,199 86.69% 838,826 74.72%
tcp udp icmp indir 1,088,572 96.96% 1,014,999 90.41%

responsive = target responded to at least 75% of probes
monotonic = target’s IP-ID time series is monotonic

addresses that respond to multiple methods
frequently share counters across methods:

cross-method comparison of different addresses
may be useful

but negative results should not be treated as conclusive
• caused by per-method or per-interface counter

45

udp icmp indir

tcp 94.97% 87.05% 90.57%

udp 96.15% 95.91%

icmp 95.84%

Counter Sharing

MIDAR Execution

discovery stage: find candidate alias pairs

corroboration stage: confirm candidates

46

Discovery Stage

estimation run

find velocities needed for sliding window

identify each target's best probe method
• prefer in descending order TCP, UDP, ICMP, indir

can probe each target independently of others

sliding window run

discover candidate alias pairs, including many false
positives

47

Corroboration Stage
goal: eliminate all false positives

probing several hours after discovery stage gives
non-shared counters time to diverge

naive implementation: repeat sliding window run

unnecessarily tests pairs that we have already rejected

optimized implementation:

only compare pairs in the transitive closure of the
potential alias pairs found in the discovery stage

probe alias set members one at a time, with smallest
possible spacing that doesn't trigger rate limiting
(>500ms)
• tight spacing reduces false positives

48

MIDAR Results

discovery stage (sliding window):

probed 1.0 million addresses

486 billion pairs compared

shared pairs found: 1.6 million (0.00093%)

55k alias sets containing 497k addrs

corroboration stage:

shared pairs found: 428k (26% of discovery stage)
• not actually 1.2 million false positives; inflated by human

error

69k alias sets containing 186k addrs
• stable across multiple corroboration runs

49

MIDAR Results
consistency check: out of 69k sets,187k addrs,
428k pairs after corroboration ...

every pair inferred by transitive closure was tested with
the monotonic bounds test at least once and passed
every time

all but 80 pairs were tested at least twice and passed
every time

only 12 sets (49 addrs) contained transitive closure
conflicts:

50

A

B C

A=B

B=C

A≠C We suspect real network change
caused these conflicts and

not false positives.

MIDAR Validation

51

full ISP
topology

OMIRs MIDAR

routers 1,986 983 434

addresses 24,429 4,008 1,284

pairs 611,407 16,900 2,133

we compared MIDAR results to ground truth for a
tier 1 ISP

for comparison, we only consider routers that appear
with multiple interfaces in Ark traces
• observed multi-interface routers (OMIRs)

0 false positives

Future Work

MIDAR improvements

adapt corroboration spacing to responsiveness

MAARS: Multi-Approach Alias Resolution System

combine MIDAR, kapar, iffinder (and others?)

How to use MIDAR negatives to reduce false positives
in kapar?

52

