Epidemics in Social Networks

Maksim Kitsak
Cooperative Association for Internet Data Analysis (CAIDA)
University of California, San Diego

Q1: How to model epidemics?
Q2: How to immunize a social network?
Q3: Who are the most influential spreaders?

University of Nevada, Reno December 2nd, 2010
430 B.C.
Plague of Athens
25% population

1300-1700
Plague
~75-200 million died

1816-1923
Cholera (7 outbreaks)
~38 million died

1918-1920
Spanish Flu
20-100 million died

2003
S.A.R.S.
775 deaths

2009
H1N1 (Swine) Flu
18000 deaths

Pieter Bruegel's "The Triumph of Death," depicting plague in the 16th century
Image courtesy Museo del Prado, Madrid
Other examples of epidemics

Rumor.
Ideas

Email Virus

MMS Virus
How can we model epidemics? Compartmental models!

Compartmental Models

- **SI** model:
 - i to r: β transmission rate
 - r to s: recovery rate μ
 - $dI/dt = \langle k \rangle \beta SI$
 - $I + S = 1$

- **SIS** model:
 - i to s: β transmission rate
 - s to i: recovery rate μ
 - $dI/dt = \langle k \rangle \beta SI - \mu I$
 - $I + S = 1$

- **SIR** model:
 - i to r: β transmission rate
 - r to i: recovery rate μ
 - $dI/dt = \langle k \rangle \beta SI - \mu I$
 - $I + S + R = 1$

Assumption: Random Homogeneous Mixing!
How can we model epidemics? Compartamental models!

Everyone Infected
Endemic (equilibrium)
Recovery rate = infectious rate

Everyone Recovers

Critical threshold: $\beta_c = \mu/\langle k \rangle$

Disease extinct

β_c

Disease prevails

β

Compartamental models surprisingly well reproduce highly contagious diseases.
Human sexual contacts

Nodes: people (Females; Males)

Links: sexual relationships

4781 Swedes; 18-74; 59% response rate.

Liljeros et al. Nature 2001
Worldwide Airport Network

3100 airports
17182 flights
99% worldwide traffic

Colizza et al. PNAS 2005
Mobile Phone Contact Network

6.8 million users
1 month observation

Wang et al. Science 2009
Random vs. scale-free networks

(a) Erdös Rényi

Poisson distribution
(Exponential tail)

\[P(k) = e^{-k} \frac{<k>^k}{k!} \]

(b) Scale-Free

Power-law distribution

\[P(k) \sim k^{-\lambda} \]
\[\lambda \in (2, 3) \]

Social networks are scale-free! Need *stochastic* epidemic models.
Stochastic SIR model

Transmission rate: $\beta = 0.5$
Recovery rate: $\mu = 0.5$

Quantities of interest:
Total Recovered:
$M = 14$
Survivors: $S = 3$
Total time: $T = 5$
Epidemics in scale-free networks

Power-law distribution
\[P(k) \sim k^{-\lambda} \]
\[\lambda \in (2, 3) \]

Anderson, May (1991)

Epidemic threshold:
\[\beta_c = \mu \frac{\langle k \rangle}{\langle k^2 \rangle} \]
\[\langle k^2 \rangle = \sum k^2 P(k) = \infty \quad (\lambda < 3) \]

\[\beta_c = 0 \]

No epidemic threshold in Scale-free networks!
Network Immunization Strategies

Goal of efficient immunization strategy:

Immunize at least critical fraction f_c of nodes
so that only isolated clusters of susceptible individuals remain.
If possible, without detailed knowledge of the network.

Large global cluster of susceptible individuals $f=0$

Small (local) clusters of susceptible individuals $f=1$

$\text{Susceptible individuals}$
Network Immunization Strategies

Random: High threshold, no topology knowledge required.
Targeted: Low threshold, knowledge of connected nodes required.
Acquaintance: Low threshold, no topology knowledge required.

Graph Partitioning Immunization Strategy

Partition network into arbitrary number of same size clusters

Based on the Nested Dissection Algorithm

5% to 50% fewer immunization doses required

Who are the most influential spreaders?

SIR:
Who infects/influences the largest fraction of population?

SIS:
Who is the most persistent spreader? Who stays the most in the Infected state?

Not necessarily the most connected people!
Not the most central people!

M. Kitsak et al. Nature Physics 2010
Spreading efficiency determined by node placement!

Hospital Network: Inpatients in the same quarters connected with links

node A
k=96

node B
k=96

Probability to be infected

Fraction of Infected Inpatients

Probability

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

0.00 0.1 0.2 0.3 0.4 0.5 0.6

100% 75% 50% 25%
k-cores and k-shells determine node placement

K-core: sub-graph with nodes of degree at least k inside the sub-graph.

Pruning Rule:

1) Remove all nodes with k=1.

Some remaining nodes may now have k = 1.

2) Repeat until there is no nodes with k = 1.

3) The remaining network forms the 2-core.

4) Repeat the process for higher k to extract other cores

K-shell is a set of nodes that belongs to the K-core but NOT to the K+1-core

S. B. Seidman, Social Networks, 5, 269 (1983).
Identifying efficient spreaders in the hospital network (SIR)

(1) For every individual i measure the average fraction of individuals M_i he or she would infect (spreading efficiency).
(2) Group individuals based on the number of connections and the k-shell value.

A. Most efficient spreaders occupy high k-shells.

B. For fixed k-shell $<M>$ is independent of k.

C. A lot of hubs are inefficient spreaders.

Three candidates: Degree, k-shell, betweenness centrality
Imprecision functions test the merits of degree, k-shell and centrality

For given percentage p
- Find N_p the most efficient spreaders (as measured by M)
- Calculate the average infected mass M_{EFF}
- Find N_p the nodes with highest k-shell indices.
- Calculate the average infected mass M_{kshell}.

Imprecision function:

$$\varepsilon(p) = 1 - \frac{M_{kshell}(p)}{M_{EFF}(p)}$$

Measure the imprecision for K-shell, degree and centrality.

k-shell is the most robust spreading efficiency indicator. (followed by degree and betweenness centrality)
Multiple source spreading is enhanced when one “repels” sources.
Identifying efficient spreaders in the hospital network (SIS)

SIS: Number of infected nodes reaches endemic state (equilibrium)

Persistence $\rho_i(t)$ (probability node i is infected at time t)

High k-shells form a reservoir where virus can exist locally.

Consistent with core groups (H. Hethcote et al 1984)
Take home messages

1) *(Almost)* No epidemic threshold in Scale-free networks!

2) **Efficient immunization strategy:**

 Immunize at least critical fraction f_c of nodes so that only isolated clusters of susceptible individuals remain

3) **Immunization strategy is not reciprocal to spreading strategy!**

4) **Influential spreaders (not necessarily hubs) occupy the innermost k-cores.**
Collaborators

Lazaros K. Gallos
CCNY, New York, NY

Lev Muchnik
NYU, New York, NY

Shlomo Havlin
Bar-Ilan University
Israel

Fredrik Liljeros
Stockholm University
Sweden

H. Eugene Stanley
Boston University,
Boston, MA

Hernán A. Makse
CCNY,
New York, NY