Analysis of Country-wide Internet Outages Caused by Censorship

alberto@unina.it
University of Napoli “Federico II”
CONTEXT

Project goal & main message

• Analysis of **macroscopic Internet events** using multiple large-scale data sources

• Revival of Network Telescopes: **Internet Background Radiation** can be used as a unique measurement tool for the Internet!
THE EVENTS

Internet Disruptions in North Africa

• Egypt
 - January 25th, 2011: protests start in the country
 - The government orders service providers to “shut down” the Internet
 - January 27th, around 22:34 UTC: several sources report the withdrawal in the Internet’s global routing table of almost all routes to Egyptian networks
 - The disruption lasts 5.5 days

• Libya
 - February 17th, 2011: protests start in the country
 - The government controls most of the country’s communication infrastructure
 - February 18th (6.8 hrs), 19th (8.3 hrs), March 3rd (3.7 days): three different connectivity disruptions:

Jan 25 2011
Jan 27 22:12 (5.5 days)
Feb 17
Feb 18 23:15 (6.8 hours)
Feb 19 21:55 (8.3 hours)
Mar 03 16:57 (3.7 days)
NETWORK INFO
Prefixes, ASes, Filtering

• Egypt
 - 3165 IPv4 and 6 IPv6 prefixes are delegated to Egypt by AfriNIC
 - They are managed by 51 Autonomous Systems

 - Filtering type: BGP only
 - Filtering dynamic: synchronized; progressive

• Libya
 - 13 IPv4 prefixes, no IPv6 prefixes
 - 3 Autonomous Systems operate in the country

 - Filtering type: mix of BGP, packet filtering, satellite signal jamming
 - Filtering dynamic: testing different techniques; somehow synchronized
WHAT WE DID

Combined different measurement sources

• BGP
 - BGP updates from route collectors of RIPE-NCC RIS and RouteViews
 - We combined information from both databases
 - Graphical Tools: REX, BGPlay, BGPviz

• Active Traceroute Probing
 - Archipelago Measurement Infrastructure (ARK)
 - We underutilized this data source.

• Internet Background Radiation (IBR)
 - Traffic reaching the UCSD Network Telescope
 - Capable of revealing different kinds of blocking
DATA SELECTION

Geolocation + announced prefixes

• IP ranges associated with the country of interest
 - Delegations from Regional Internet Registries (RIR)
 - Commercial geolocation database

<table>
<thead>
<tr>
<th></th>
<th>Egypt</th>
<th>Libya</th>
</tr>
</thead>
<tbody>
<tr>
<td>AfriNIC delegated IPs</td>
<td>5,762,816</td>
<td>299,008</td>
</tr>
<tr>
<td>MaxMind GeoLite IPs</td>
<td>5,710,240</td>
<td>307,225</td>
</tr>
</tbody>
</table>

• Gather prefixes to be monitored by looking at BGP announcements. For each IP range:
 - Look up for an exactly matching BGP prefix
 - Find all the more specific (strict subset, longer) prefixes
 - Otherwise, retrieve the longest BGP prefix entirely containing it

• When referring to an AS, we actually refer to the IPs of that AS that are associated with the country of interest
BGP

prefix reachability

• We reconstruct prefixes losing and regaining reachability
 - we build the routing history of every collector’s peer for each collector
 - using both RIBs and UPDATES
 - we mark a prefix as disappeared if it is withdrawn in each routing history

Egyptian disconnection and reconnection **NOTE: IPv6 routes stayed up!**
BGP

per-AS analysis

- A detailed analysis shows there is synchronization among ASes.
ROUTE CHANGES

BGPlay

• The massive disconnection caused some path changes too

Before

After

January 27th
UCSD TELESCOPE
when malware helps..

• Unsolicited traffic, a.k.a. Internet Background Radiation - e.g. scanning from conficker-infected hosts - from the observed country reveals several aspects of these outages!

Egypt

Libya

A, B, C: Outages
D1, D2: Denial of Service attacks
UCSD TELESCOPE

need to dissect traffic

- We classified traffic to the telescope in:
 - **Conficker-like**
 - **Backscatter** (e.g. SYN-ACKs to randomly spoofed SYNs of DoS attacks)
 - **Other**

Egypt: telescope traffic

- conficker-like
- other
- backscatter
TELESCOPE vs BGP

Consistency

• The sample case of EgAS7 shows the consistency between telescope traffic and BGP measurements

Egypt: disconnection of EgAS7

![Graph showing packet rate of unsolicited traffic and visibility of BGP prefixes over time.](image)

packet rate of unsolicited traffic
visibility of BGP prefixes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 20 40 60 80

0 01-27 00:00 01-28 00:00 01-29 00:00 01-30 00:00 01-31 00:00 02-01 00:00 02-02 00:00 02-03 00:00 02-04 00:00

Number of IPv4 prefixes in BGP
Contrasting telescope traffic with BGP measurements revealed a mix of blocking techniques that was not publicized by others.

The second Libyan outage involved overlapping of *BGP withdrawals* and *packet filtering*.
ARK

active measurements

• ARK active measurements are consistent with other sources
 - limitation due to frequency of probes and because they target random addresses
 - the first two Libyan outages are not visible
 - we used them only to test reachability, not to analyze topology
• Third Libyan outage: while BGP reachability was up, most of Libya was disconnected
 - ARK measurements confirmed the finding from the telescope
 1) disconnection
 2) identification of some reachable networks suggesting the use of packet filtering by the censors
• Third Libyan outage
- A Libyan IPv4 prefix managed by SatAS1 was BGP-reachable
- Only a small amount of traffic from that prefix reaches the telescope during the outage

Libya: Telescope traffic from national operator and satellite-based ISP
CONCLUSION

it’s hard to say goodbye..

• Contributions
 • a detailed **analysis of macroscopical political events** combining different measurement sources allowing to reveal insights not available from any individual data source
 • **1st-time use of IBR for this kind of analysis** - extracting benefit from harm!
 • Interesting findings
 - **IPv6 was neglected** by censors
 - Detected **packet filtering** and identified of networks unfiltered by the regime
 - Identified **Denial of Service attacks**
 - Detected probable use of **signal jamming on satellite**-based connectivity

• Future work
 - Automated detection + triggered active measurements
 - Analysis of other types of network outages (e.g. caused by natural disasters)
 - Analysis of AS-level topology
THANKS