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What is a bipartite network? Definition and Examples

Nodes of a bipartite network can be divided
Into two disjoint sets (authors, papers) so that no
links connect 2 nodes in the same set.

Examples:

 Collaboration networks:
Authors are associated with papers they publish
e Actor networks:
Actors are connected to films.
 Metabolic Networks
Metabolites are related to chemical reactions
 Peerto peer networks (P2P):
Participants that make a portion of their resources directly available
to other network participants.



How many papers two authors have in common?
8

= e Physics
—es——o— Imdb
—m——eo— Metabolic

(m): # of shared neighbors
(M): maximum # of shared
neighbors .
Physics: M=190(6) ,_\10
Imdb: M=216 (7) =
Metabolic: M=13 (2) —
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1) P(m) is distributed as a power-law.
2) M is significantly higher in real bipartite networks
than in randomized counterparts.




Ordinary Clustering Coefficient

How close are node neighbors from being a complete graph?

C __Number of links among neighbors of node i
j— Total possible links among neighbors of node i

- D. J. Watts and S. Strogatz Nature 393 (1998).
22
p- m=n
C, =

Average clustering for degree k:
C (k) ;e <Ci>ki K

Average clustering for the network:
2. 41
C =— C.
N ZI |

Many real networks are highly clustered!
(compared to their random counterparts)




Bipartite Clustering Coefficient

1) Bipartite Networks: Neighbors of a given node are NEVER
connected. C=0. No 3-loops in bipartite networks.
2) Bipartite Clustering is defined based on 4-loops!

P. Zhang et al, Physica A, 387 27 6869 (2008).

A Consider all pairs of neighbors

O
/ 1 node in common, 4 nodes altogether.
0 nodes in common, 4 nodes altogether.
2 Nodes in common, 3 nodes altogether.
1+0+2 3 2[AL 1 A,
O C — e C — m#n
4+4+3 11 ZAmUAn
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Bipartite clustering is significantly higher in real bipartite
networks than in random networks (Next Slide).




Real bipartite networks are highly clustered
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Properties of Bipartite Networks

1) Top (Bottom) nodes tend to share a lot of (Bottom)
(Top) nodes.
2) Bipartite networks are highly clustered.

WHY?

Bipartite networks
have metric structure.



Actor network has metric structure?
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Actor network has metric structure?

A. smaller distances imply
higher connection probability!

B. small d, and d,imply
small d;?

C. Triangle Inequality
d,<d,+d,?

Underlying Space is Metric!
1) d(x,y)=20

2) d(x,y)=0 < x=y

3) d(x,y)=d(y,x)

4) d(x,z) = d(x,y)*+d(z,y)
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The Underlying Metric Space Hypothesis

Network topology

A. Top and Bottom nodes of bipartite networks exist in
underlying metric spaces. (d;< d,+ d,)

B. The probability of a link connecting a pair of nodes
determined by distance between the nodes in this space.

C. The probability of a link is specified by a connection
probability function r(d/d,). r(x) can be any decreasing
function of x.

D. Every node is assigned an hidden variable:
K (top nodes) A (bottom nodes). Distance scale: d =d_(kA)




Modeling Bipartite Networks in Metric Spaces: S1S1 model

1) Uniformly distribute N top and M bottom
nodes on a 1-D Euclidean ring of radius R. g//

2) For every node of each kind calculate its B
hidden variable drawn from P(k) or P(A). ,7

P(k)~x™" %
P(A)~47P(1)=6(1-4,) ‘

3) Connect authors and papers with
probability

Fhe .. Y
PiT ik, T do(xiA)

Large B corresponds to preferred connections at small distance




Connectivity of S1S1 model.
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© S1SI model,
10° N=5%10°, M=5*10°
P(k)~k"2, P()=6(7-3.0)
" =25
-
—a— P(k) top nodes
a1 = P(k) bottom nodes
10+
10° 10’ 10° 10°
Degree, k
Connectivity of S1S1 is fully controlled by hidden variables
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How many papers two authors have in common? (Revisited)
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Power law statistics of common neighbors
is the consequence of metric property of the space




Bipartite Clustering (Revisited)
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B tunes the bipartite clustering!

High bipartite clustering
is the direct consequence of the metric property of the space




Degree Thresholding “Symmetry”

Remove top and bottom nodes: k<k;; s<A; Do not Iterate!

K,=4, A =1 k=4 k=3 k=2 K,=3, A,;=2

y — J
k=1 k—0 k— M k=3 k=3 k-0
\ s=2 s=3 s=1 s=3 :>
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Degree Distribution and Clustering are Self-Similar in S1S1




Applications: AS Internet (Greedy Routing)

/ Greedy routing:

%\ 3 ﬁ'-_% ﬁ'\g’ .
% £} Fal Forward packets to neighbor
% L, closest to the destination.

(in the metric space)
“ ASes need only local
information!
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Success Ratio: 85%

M. Boguna, F. Papadopoulos, and D. Krioukov,
Sustaining the Internet with Hyperbolic Mapping,
Nature Communications, v.1, 62, 2010




Applications for Bipartite Networks

A. Recommendation Systems:
Consumers are connected to products they purchased.
Can we recommend new products to consumers?

B. Metabolic Networks
Metabolites are related to chemical reactions.
Can we predict missing reactions?
M.Boguna, M.A. Serrano (in preparation) (2011).

C. Gene regulatory networks.
D. Protein Protein Interaction networks.

E. ?7?7? Feel free to suggest!




Open Questions

Why nodes of both kinds belong to the same metric space?

k=4 k=3 k=2

Links between nodes of different kinds.

!

Only need distances between different

=2 = =1 = L
A PR e kinds of nodes?

Suppose, both sets of nodes are in the same metric space.
Only distances between different kinds of nodes known.
Necessary/Sufficient conditions to infer remaining distances?

Efficient Algorithms to infer coordinates of nodes?
Currently available algorithm is based on maximum likelihood
techniques O(N°). Approximate embedding O(N?).




Summary

1) High bipartite clustering and power-law distribution of
the number of shared neighbors in bipartite networks
naturally explained by existence of underlying metric spaces.

2) S1S51 models can reproduce most properties of real
bipartite networks.

3) S1S71 models and real bipartite networks are self-similar
upon the degree-thresholding renormalization.

4) Challenge: efficient embedding algorithms. Currently
available algorithm O(N3). Approximate algorithm O(N?).

5) Possible Applications: recommendation systems,
signalling pathways, content search.
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