A Cost Model for Network Traffic
(with an application to paid-peering)

Amogh Dhamdhere (CAIDA)
with
Murtaza Motiwala, Nick Feamster (Georgia Tech),
Anukool Lakhina (Guavus) [Cost Model]

Pierre Francois (UCL), Constantine Dovrolis (Georgia Tech)
[Paid-peering]
Outline

• These are really two talks
• But they are related
• Part 1: Formalizing a cost model for network traffic
 [CCR’12]
• Part 2: A value-based framework for peering agreements
 [ITC’10, NANOG 49]
• The cost model can be useful for measuring peering “value”
Part 1: Formalizing a Cost Model for Network Traffic
Optimizing Network Costs

- Traffic-related costs contribute to the total cost of running a network
- Routing in recession: configuring routing in a network to minimize traffic-related costs
- Relatively easy: How do Individual elements contribute to costs? Harder: How much do individual ingress-egress flows cost?
- Need a holistic traffic cost model that can attribute costs to individual flows
Need for a Traffic Cost Model
Need for a Traffic Cost Model

Cost-based paths selector
Need for a Traffic Cost Model

network topology, routing information

Cost-based paths selector
Need for a Traffic Cost Model

Traffic Matrix

Cost-based paths selector

network topology, routing information
Need for a Traffic Cost Model

Traffic Matrix

Cost-based paths selector

Output

low cost paths for each destination

network topology, routing information
Need for a Traffic Cost Model

Cost-based paths selector

Traffic Matrix

network topology, routing information

Traffic Cost Model (?)

Output

low cost paths for each destination
Need for a Traffic Cost Model

A holistic traffic cost model

Traffic Matrix

network

Traffic Cost Model (?)

low cost paths
Costs for operating a network

- **Traffic costs**
 - Paying for transit, port costs, cost for laying fiber
- **Operational costs**
 - Paying salaries to employees
- **Equipment and maintenance costs**
 - Buying networking gear, service fees to vendors
- **Miscellaneous costs**
 - IT related, real-estate, etc
Costs for operating a network

- **Traffic costs**
 - Paying for transit, port costs, cost for laying fiber

Goal: A simple but still useful cost model

- Buying networking gear, service fees to vendors

- **Miscellaneous costs**
 - IT related, real-estate, etc
Applications

• **Min-cost routing**: Optimal routing of ingress-egress flows to minimize cost
• **Peering Location selection**: Which location to establish peering with a neighbor?
• **Peering evaluation**: What is the “value” of a peering link?
A Traffic Cost Model

backhaul cost
A Traffic Cost Model

backhaul cost

interconnect cost
A Traffic Cost Model
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p_1,p_2) + \]

Fixed Backhaul cost for all (PoP, PoP) pairs
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum_{p1,p2} c_b(p1,p2) + \sum_{a,p} c_i(a,p) \]

Fixed Backhaul cost for all (PoP, PoP) pairs

Fixed Interconnect cost for all (AS, PoP) pairs
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p1,p2) + \sum c_i(a,p) \]

Fixed Backhaul cost for all (PoP, PoP) pairs

Fixed Interconnect cost for all (AS, PoP) pairs
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum_{(p1,p2)} c_b(p1,p2) + \sum_{(a,p)} c_i(a,p) \]

- **Fixed Backhaul cost** for all (PoP, PoP) pairs
- **Fixed Interconnect cost** for all (AS, PoP) pairs
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p1,p2) + \sum c_i(a, p) \]

Fixed Backhaul cost for all (PoP, PoP) pairs

Fixed Interconnect cost for all (AS, PoP) pairs

\[C_U = \sum (c_i(f) + f) \]

Ingress Interconnect Cost
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p1,p2) + \sum c_i(a,p) \]

\(C_F \) = Fixed Backhaul cost for all (PoP, PoP) pairs

\(C_U \) = Ingress Interconnect Cost

\(C_U \) = Fixed Interconnect cost for all (AS, PoP) pairs

\[C_U = \sum_i (c_i(f) + c_b(f)) \]

\[\sum_i (c_i(f) + c_b(f)) \]

\(C_U \) = Backhaul Cost

2nd Workshop on Internet Economics, Dec 2011
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p1,p2) + \sum c_i(a,p) \]

Fixed Backhaul cost for all (PoP, PoP) pairs

Fixed Interconnect cost for all (AS, PoP) pairs

\[C_U = \sum (c_i(f) + c_b(f) + c_e(f)) \]

Ingress Interconnect Cost

Backhaul Cost

Egress Interconnect Cost
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p1,p2) + \sum c_i(a,p) \]

Fixed Backhaul cost for all (PoP, PoP) pairs

Fixed Interconnect cost for all (AS, PoP) pairs

\[C_U = \sum (c_i(f) + c_b(f) + c_e(f)) \]

Ingress Interconnect Cost

Backhaul Cost

Egress Interconnect Cost
A Traffic Cost Model

\[C_N = C_F + C_U \]

Total Cost = Fixed Cost + Usage-based Cost

\[C_F = \sum c_b(p1,p2) + \sum c_i(a,p) \]

\[C_U = \sum (c_i(f) + c_b(f) + c_e(f)) \]

Fixed Backhaul cost for all (PoP, PoP) pairs

Fixed Interconnect cost for all (AS, PoP) pairs

Ingress-egress flows

Ingress Interconnect Cost

Backhaul Cost

Egress Interconnect Cost
Cost Optimization

- We focus on optimizing traffic-dependent costs
- Requires an operator to determine the cost associated with each ingress-egress flow
- Interconnect costs based on 95th percentile of total volume at that interconnect: \(\text{cost} = \text{per_bit_price} \times V_{95} \)
- Approach 1: Assume \(V_{95} \) is linear function of average rate
 - Flow’s contribution = \(\text{per_bit_price} \times \text{constant} \times \text{flow_rate} \)
- Approach 2: Use Shapley Value
 - Flow’s contribution = Shapley value across all flows at that interconnect
Cost Optimization

- We focus on optimizing traffic-dependent costs

- Requires an operator to determine the cost associated with each ingress-egress flow

- Interconnect costs based on 95^{th} percentile of total volume at that interconnect: \[\text{cost} = \text{per	extunderscore bit	extunderscore price} \times V_{95} \]

- Approach 1: Assume V_{95} is linear function of average rate
 - Flow’s contribution = \[\text{per	extunderscore bit	extunderscore price} \times \text{constant} \times \text{flow	extunderscore rate} \]

- Approach 2: Use Shapley Value
 - Flow’s contribution = Shapley value across all flows at that interconnect
Cost Optimization

- We focus on optimizing traffic-dependent costs
- Requires an operator to determine the cost associated with each ingress-egress flow
- Interconnect costs based on 95th percentile of total volume at that interconnect: \(\text{cost} = \text{per_bit_price} \times V_{95} \)
- Approach 1: Assume \(V_{95} \) is linear function of average rate
 - Flow’s contribution = \(\text{per_bit_price} \times \text{constant} \times \text{flow_rate} \)
- Approach 2: Use Shapley Value
 - Flow’s contribution = Shapley value across all flows at that interconnect

Approximation!

Computationally expensive!
Application 1: Minimize Cost of Routing Traffic

- Objective: Minimize total cost of all ingress-egress flows
- Constraints: Backhaul, interconnect link capacities
- Knobs: egress (pop, AS) for each flow

- NP-hard to determine optimal routing! Use a greedy algorithm to approximate the optimal solution

- Iteratively, for each flow f in descending order of flow costs
 - For each PoP p, find the cheapest AS at p which has a route to f’s destination
 - Assign f to the cheapest egress (PoP, AS) pair
Cost Optimization

Cumulative Fraction of Savings vs. Fraction of Flows

- Backhaul $>>$ Interconnect
- Backhaul \approx Interconnect
- Backhaul $<<$ Interconnect
Cost Optimization

- Moving 10% flows gives 65% of the total cost savings.

- Backhaul >> Interconnect
- Backhaul ≈ Interconnect
- Backhaul << Interconnect
Part 2: A Value-based Framework for Peering Decisions
Evaluating Potential Peers

- To peer or not to peer...

A B
Evaluating Potential Peers

• To peer or not to peer...

Should I peer with B?

A

B
Evaluating Potential Peers

• To peer or not to peer...

Should I peer with B?

Settlement-free or paid-peering?
Evaluating Potential Peers

- To peer or not to peer...

- Should I peer with B?
- What price would B accept (or offer)?
- Settlement-free or paid-peering?
Evaluating Potential Peers

- To peer or not to peer...

Should I peer with B?

What price would B accept (or offer)?

Settlement-free or paid-peering?

A

???

B
Value Based Peering

• Price based on the “value” of the link

• For a network, define the notion of economic “fitness”
 • fitness = revenue – interconnect costs – backhaul cost

• Value of a peering link is the difference in fitness with and without the link
 • Value = f_{with} - f_{without}

• Revenue and costs could change on peering/depeering
What Affects Peering Value?
What Affects Peering Value?

A $$$$ B

T

$$$$ $$$$
What Affects Peering Value?
What Affects Peering Value?

- Interconnect cost changes:
 Avoid a transit provider
What Affects Peering Value?

- Interconnect cost changes: Avoid a transit provider
- Backhaul cost changes: Peering link changes how traffic is routed in a network
What Affects Peering Value?

- Interconnect cost changes: Avoid a transit provider
- Backhaul cost changes: Peering link changes how traffic is routed in a network
What Affects Peering Value?

• Interconnect cost changes: Avoid a transit provider

• Backhaul cost changes: Peering link changes how traffic is routed in a network
What Affects Peering Value?

- Interconnect cost changes: Avoid a transit provider
- Backhaul cost changes: Peering link changes how traffic is routed in a network
What Affects Peering Value?

• Interconnect cost changes: Avoid a transit provider

• Backhaul cost changes: Peering link changes how traffic is routed in a network
What Affects Peering Value?

- Interconnect cost changes: Avoid a transit provider
- Backhaul cost changes: Peering link changes how traffic is routed in a network
- Revenue changes: Attract/lose traffic due to new peering link
The Fair Peering Price
The Fair Peering Price
The Fair Peering Price

- A and B see values V_A and V_B
The Fair Peering Price

- A and B see values V_A and V_B

- What should be the paid-peering price?
The Fair Peering Price

- A and B see values V_A and V_B
- What should be the paid-peering price?
- Fair price is $(V_A - V_B)/2$
The Fair Peering Price

- A and B see values V_A and V_B

- What should be the paid-peering price?

- Fair price is $(V_A - V_B)/2$
The Fair Peering Price

- A and B see values V_A and V_B
- What should be the paid-peering price?
- Fair price is $(V_A - V_B)/2$

The fair price equalizes the benefit that A and B see from the link
Why Peer at the Fair Price?

- Peering with the fair price is optimal
 - Both networks see better fitness by peering at the fair price
 - As compared to the case where peering link does not exist
- Peering with the fair price is stable
 - No network has the incentive to unilaterally de-peer the other
 - Unique Nash Equilibrium
- Optimal and stable as long as $V_A + V_B > 0$
 - Either V_A or V_B can be negative, as long as total is positive
 - For cost-benefit peering, both V_A and V_B must be positive
Some Hard Questions..

• Value-based peering is fair, optimal and stable.
 • But what (if any) is the right notion of fairness?
 • Equal value? Equal cost?

• How can networks estimate peering value?
 • Peering trials..
 • A cost model to estimate peering value

• What if networks lie about peering value?

• What happens if everyone uses value-based peering?
 • Density of peering links, end-to-end path lengths..
Some Hard Questions..

• Value-based peering is fair, optimal and stable.
 • But what (if any) is the right notion of fairness?
 • Equal value? Equal cost?

• How can networks estimate peering value?
 • Peering trials..
 • A cost model to estimate peering value

• What if networks lie about peering value?
 • What happens if everyone uses value-based peering?
 • Density of peering links, end-to-end path lengths..
The ITER Model

• **ITER:** Agent-based computational model to answer “what-if” questions about Internet evolution

• **Inputs:**
 • Network types: transit provider, content provider, stub
 • Peer selection methods, provider selection methods
 • Geographical constraints
 • Pricing/cost parameters
 • Interdomain traffic matrix

• **Output:** Equilibrium internetwork topology, traffic flow, per-network fitness
The ITER Approach

- Compute equilibrium: no network has the incentive to change its providers/peers
Using ITER to simulate value-based peering

- Small but realistic internetwork topology: transit providers, content providers, and stubs

- Interdomain traffic matrix: most traffic flows from content providers to stubs

- Provider selection: price-based

- Peer selection: value-based, cost-benefit and traffic-ratio peering
ITER Results: Value-based Peering

• Higher density of peering links with value-based peering as compared to peering by traffic ratios or peering by cost-benefit analysis

 • Peering links that cannot be formed with cost-benefit analysis are feasible with value-based peering

 • Shorter end-to-end paths

• Payment direction: The same network can end up on either side of a paid-peering relationship

 • What happens in practice?
Thanks!
The papers are online at www.caida.org/~amogh
Feedback, comments, criticism: amogh@caida.org
Evaluation

• Access to routing and traffic data from an access ISP in UK
• No access to backhaul and interconnect cost data
• Considered three cost scenarios:
 – Backhaul >> Interconnect (large ISP or cheap transit scenario)
 – Backhaul ≈ Interconnect
 – Backhaul << Interconnect (content provider or expensive transit scenario)
• Evaluated cost optimization using the greedy approach
• What-if scenarios:
 – Where to peer?
 – Which new peer to establish peering with?
 – How useful is an existing peering relation?
Evaluation

• Access to routing and traffic data from an access ISP in UK
• No access to backhaul and interconnect cost data
• Considered three cost scenarios:
 – Backhaul >> Interconnect (large ISP or cheap transit scenario)
 – Backhaul ≈ Interconnect
 – Backhaul << Interconnect (content provider or expensive transit scenario)
• Evaluated cost optimization using the greedy approach
• What-if scenarios:
 – Where to peer?
 – Which new peer to establish peering with?
 – How useful is an existing peering relation?
Evaluating Current Peers
Evaluating Current Peers

Why is B still a settlement-free peer?
Evaluating Current Peers

Why is B still a settlement-free peer?

Does B benefit more than me?
Evaluating Current Peers

Why is B still a settlement-free peer?

Should I demand payment? Should I delve deeper?

Does B benefit more than me?
Negative Peering Value

\[f_A: \$50k \quad \text{and} \quad f_B: \$100k \]
Negative Peering Value

\[f_A: \$50k \quad f_B: \$100k \]
Negative Peering Value

\[f_A: \$50k \rightarrow \$60k \quad f_B: \$100k \rightarrow \$95k \]
Negative Peering Value

\[V_A = $10k \quad V_B = -$5k \]

\[f_A: $50k \rightarrow $60k \quad f_B: $100k \rightarrow $95k \]
Negative Peering Value

\[f_A: \$50k \rightarrow \$60k \]
\[f_B: \$100k \rightarrow \$95k \]

\[V_A = \$10k \]
\[V_B = -\$5k \]
Negative Peering Value

$52.5k \smile$

f_A: $50k \rightarrow $60k \quad f_B$: $100k \rightarrow $95k

$V_A = $10k \quad V_B = -$5k
Negative Peering Value

$V_A = $10k$

$V_B = -$5k$

$f_A: $50k \rightarrow $60k$

$f_B: $100k \rightarrow $95k$

$52.5k \smile$

$102.5k \smile$
Hiding peering value

- Assume true $V_A + V_B > 0$ and $V_B > V_A$
 - A should get paid $(V_B - V_A)/2$

- If A estimates V_B correctly, and claims its peering value is V_L, where $V_L << V_A$
 - B is willing to pay more: $(V_B - V_L)/2 :)$

- If A doesn’t estimate V_B correctly, and $V_L + V_B < 0$, the peering link is not feasible!
 - A loses out on any payment :(

2nd Workshop on Internet Economics, Dec 2011