Analysis of a "/O" Stealth Scan from a Botnet

A. Dainotti, A. King, K. Claffy, F. Papale*, A. Pescapè* alberto@caida.org CAIDA - University of California, San Diego *University of Napoli Federico II, Italy

DARKNET

a.k.a. Network Telescope

- A portion of the Internet address space that
 - has no hosts assigned to its IP addresses
 - but is reachable up to the router announcing it

Traffic reaching the router is therefore unsolicited (Internet Background Radiation)
It can be collected and analyzed

- The UCSD Network Telescope is a very large darknet:
 A /8 network: xx.*.*.*
 - -That is, 1/256 of the entire IPv4 address space

Cooperative Association for Internet Data Analysis University of California San Diego

BOTNET a **net**work of "ro**bots**"

• A collection of hosts ("bots") around the world infected by the same malware

• The malware keeps them under the control of a single entity ("botmaster") through a "Command and Control channel"

• The botmaster instructs the bots to perform malicious activities

- stealing private information on the infected hosts
- perform distributed denial of service attacks
- perform distributed scanning/probing and bruteforcing
- spamming

Cooperative Association for Internet Data Analysis University of California San Diego

WHAT IS IT? Feb 2011

- A ''/O'' scan from a botnet
- Observed by the UCSD telescope (a /8 darknet)
- Scanning SIP Servers with a specific query on UDP port 5060 and SYNs on TCP port 80

calda

OVERVIEW numbers for UDP

# of probes (1 probe = 1 UDP + multiple TCP pkts)	20,255,721
#of source IP addresses	2,954,108
# of destination IP addresses	14,534,793
% of telescope IP space covered	86,6%
# of unique couples (source IP - destination IP)	20,241,109
max probes per second	78.3
max # of distinct source IPs in 1 hour	160,264
max # of distinct source IPs in 5 minutes	21,829
average # of probes received by a /24	309
max # of probes received by a /24	442
average # of sources targeting a destination	1.39
max # of sources targeting a destination	14
average # of destinations a source targets	6.85
max # of destination a source targets	17613

REL WORKS

• Analyses of botnet scans

small botnets, small dark/honeynets, no coordination!

- Z. Li, A. Goyal, Y. Chen, V. Paxson "Towards Situational Awareness of Large-scale Botnet Probing Events", IEEE Transactions on Information Forensics & Security, March 2011 (earlier version in Proc. ASIACCS, Mar. 2009.)

- Z. Li, A. Goyal, Y., Chen, "Honeynet-based Botnet Scan Traffic Analysis", Book Botnet characterization of Detection (Adv. in Inf Sec.) 2008

Coordinated scans

- S. Staniford, V. Paxson, N. Weaver, "How to Own the Internet in Your Spare Time", Usenix Sec. Symp. 2002

- Carrie Gates, "Coordinated Scan Detection", NDSS 2009

- Y. Zhang and B. Bhargava. "Allocation schemes, Architectures, and Policies for Collaborative Port Scanning Attack.", Journal of Emerging Technologies in Web Intelligence, May 2011

• Botnet code analysis

- P. Barford, V. Yegneswaran, "An Inside Look at Botnets", Special Workshop on Malwara Detection Advances in Information Security Springer Verlag 2006

- Malware Detection, Advances in Information Security, Springer Verlag, 2006
- P. Bacher, T. Holz, M. Kotter, and G. Wicherski, "Know your Enemy: Tracking Botnets," http://www.honeynet.org/papers/bots. 2008

show simple scanning strategies

don't observe.

they propose

6

COORDINATION (lack of)

- Z. Li, A. Goyal, Y. Chen, V. Paxson "Towards Situational Awareness of Large-scale Botnet Probing Events", IEEE Transactions on Information Forensics & Security, March 2011

• "By analyzing the source code of five popular families of bots we studied different dimensions of scan strategies employed by botnets. [..] Overall, we find they employ simple scanning strategies."

• "Our dataset analysis accords with the above capabilities: most scanners we observe either use **simple sequential scanning** (IP address increments by one between scans) or **independent uniform random scanning**."

COORDINATION ...and Redundancy

- Z. Li, A. Goyal, Y. Chen, V. Paxson "Towards Situational Awareness of Large-scale Botnet Probing Events", IEEE Transactions on Information Forensics & Security, March 2011

• "Redundancy. Since the bots in a botnet can readily be lost due to detection or due to the host computer going offline, the botmaster will prefer instructing **multiple bots to scan the same addresses.**"

• a simple and effective approach is to ask each bot to independently scan the **specified range in a random uniform fashion.** [..] In the source code analysis we find the most popular such one implemented to date (four out of five bot families implemented this strategy).

Assumptions in the extrapolation of global properties:
"[..]. second. each sender has the same global scan scope.
[...] We argue that these two fundamental assumption likely apply to any local-to-global extrapolation scheme.

SIPSCAN

Anatomy of the scan

- Payload Signature
- Unspoofed
- Botnet
- •/0 Scan
- Progression
- Bot Turnover
- Coverage vs Overlap

SIPSCAN UDP payload

2011-02-02 12:15:18.913184 IP (tos 0x0, ttl 36, id 20335, offset 0, flags [none], proto UDP (17), length 412) XX.10.100.90.1878 > XX .164.30.56.5060: [udp sum ok] SIP, length: 384 REGISTER sip:3982516068@XX.164.30.56 SIP/2.0 Via: SIP/2.0/UDP XX.164.30.56:5060; branch=1F8b5C6T44G2CJt; rport Content-Length: 0 From: <sip:3982516068@XX.164.30.56>; tag =1471813818402863423218342668 Accept: application/sdp User-Agent: Asterisk PBX To: <sip:3982516068@XX.164.30.56> Contact: sip:3982516068@XX.164.30.56 Contact: sip:3982516068@XX.164.30.56 CSeq: 1 REGISTER Call-ID: 4731021211 Max-Forwards: 70

Thanks to Saverio Niccolini @NEC (involved in IETF WGs on SIP) for brainstorming
Thanks to Joe Stewart @SecureNetworks for finding the binary of the malware
Matches a downloadable component of the Sality botnet documented by Symantec

• Thanks to the unique payload fingerprint we could isolate it without inferences

Cooperative Association for Internet Data Analysis University of California San Diego

UNSPOOFED Because...

• Egyptian outage: we were actually not seeing ''egyptian'' IPs when the Egypt was isolated from the rest of the Internet

It seems to be a scan (UDP requests + TCP SYNs).
 No purpose in spoofing

• No IPs from our /8 or from unassigned space

• IPIDs and src ports from scanning hosts are consistent for the same host

UNSPOOFED

The case of the Egyptian Killswitch (Feb 2011)

• No SipScan pkts are geolocated to Egypt during the Egyptian outage!

A. Dainotti, C. Squarecella, E. Aben, K. Claffy, M. Chiesa, M. Russo, and A. Pescapè, "Analysis of Country-wide Internet Outages Caused by Censorship", in Internet Measurement Conference (IMC), Berlin, Germany, Nov 2011

calda

Global: 22.0k-20.0k-18.0k-16.0k-12.0k-12.0k-0 1 2 3 4 5 6 7 8 9 10 11 12

Animation created with an improved version of Cuttlefish, developed by **Brad Huffaker** http://www.caida.org/tools/visualization/cuttlefish/

10 SCAN UCSD Telescope

# of probes (1 probe = 1 UDP + multiple TCP pkts)	20,255,721
#of source IP addresses	2,954,108
# of destination IP addresses	14,534,793
% of telescope IP space covered	86,6%
# of unique couples (source IP - destination IP)	20,241,109
max probes per second	78.3
max # of distinct source IPs in 1 hour	160,264
max # of distinct source IPs in 5 minutes	21,829
average # of probes received by a /24	309
max # of probes received by a /24	442
average # of sources targeting a destination	1.39
max # of sources targeting a destination	14
average # of destinations a source targets	6.85
max # of destination a source targets	17613

10 SCAN DShield

Cooperative Association for Internet Data Analysis University of California San Diego http://www.dshield.org

10 SCAN MAWI/WIDE

• We identified flow-level properties (e.g. I pkt + PS size) that allowed to spot the same traffic in MAWI/WIDE traces, which are anonymized.

- analysis of payload signature
- processing of MAWI traces to get flow-level logs
- sanitization (filtering) of MAWI logs
- plot

calda

Cooperative Association for Internet Data Analysis University of California San Diego http://mawi.wide.ad.jp/mawi/

/O SCAN MAWI/WIDE

- MAWI uses a specific configuration of Tcpdpriv for anonymization
 - A50: IP addresses are scrambled preserving matching prefixes.
 - •C4: IP classes (class A-D) are also preserved.
 - M99: All multicast addresses are not scrambled.
 - P99: TCP and UDP port numbers are not scrambled.

• A few different /8 networks were found in the MAWI traffic associated with the SipScan

SOURCE PORT CONTINUITY (in theory)

• consider a single host

 using standard sockets for opening each new TCP connection or UDP session

a new source port is assigned to each new connection/session
on some operating systems of the Microsoft Windows family, the source port assigned is obtained by incrementing a global counter: Src_port++ in range 1025 - 5000

At the telescope: by looking at the "difference" between the source ports of two subsequent packets from the same bot we can infer how many connections/sessions it opened in between them
If the bot probes at each round all the 256 /8 networks then we expect this difference to be 512

/O SCAN Exploiting source port continuity

Date (UTC)

Cooperative Association for Internet Data Analysis University of California San Diego Unrolled' Source Port Number

HILBERT CURVE

http://xkcd.com/195

15 16

3 14 13

8 9 12

7 10 11

calda

Hilbert to the reader HILBERT CURVE

Heatmaps

• The I-dimensional IPv4 address space is mapped into a 2dimensional image using a Hilbert curve

• CIDR netblocks always appear as squares or rectangles in the image.

0		14		26	1.0)	20	21	234	235	236	239	240	241	254	255
			22			23	9)9)	233	232	237	238	243	242	253	252
4		8		50	29	24	25	230	231	226	225	244	247	248	251
6	6	9	20	S II	28	27	26	229	228	227	224	245	246	249	250
58	57	54	53	672	35	36	37	218	219	220	223	202	201	198	197
59	56	56	52	35	<u>34</u>	39	38	217	216	221	222	203	200	199	196
60	61	50	51	46	45	4.0	41	214	215	210	209	204	205	194	195
68	62	40)	48	47		43	42	213	212	211	208	207	206	193	192
64	67/	68	69	17292	1923	124	1947	128	131	132	133	186	187	188	191
65	66	71	7/0	1924	120	125	126	129	130	135	134	185	184	189	190
78	77	72	73	121(3)	1119	114	115	142	141	136	137	182	183	178	177
7/9	7/6	75	7/4	12.97	116	115	1.192	143	140	139	138	181	180	179	176
80	81	94	95	96	97	110	111	144	145	158	159	160	161	174	175
38	82	98	92	99	08	109	108	147	146	157	156	163	162	173	172
84	37	88	91	100	103	104	107	148	151	152	155	164	167	168	171
85	86	89	90	161	102	105	106	149	150	153	154	165	166	169	170

Software for hilbert-based IP heatmaps @ http://www.measurement-factory.com

Target Hosts (X.b.c.d/8)

Target Hosts (X.b.c.d/8)

BOT TURNOVER new src IPs arrive constantly

26

BOT TURNOVER

most src IPs leave constantly

BOT TURNOVER

few src IPs stay for a while

# of probes (1 probe = 1 UDP + multiple TCP pkts)	20,255,721
#of source IP addresses	2,954,108
# of destination IP addresses	14,534,793
% of telescope IP space covered	86,6%
# of unique couples (source IP - destination IP)	20,241,109
max probes per second	78.3
max # of distinct source IPs in 1 hour	160,264
max # of distinct source IPs in 5 minutes	21,829
average # of probes received by a /24	309
max # of probes received by a /24	442
average # of sources targeting a destination	1.39
max # of sources targeting a destination	14
average # of destinations a source targets	6.85
max # of destination a source targets	17613

COVERAGE & OVERLAP

different phases w/ different parameters?

Coverage

Sinscan Source IPs

Overlap

29

COVERAGE & OVERLAP

different phases w/ different parameters?

COVERAGE & OVERLAP

"probes sent to reverse /16 subnets"

Example of a reverse /16: *.*.45.123
From the UCSD Telescope we can see only pkts to xx.*.45.123

SIPSCAN FEATURES

some are unique

- Operated by a botnet
- Global vs Global
- Observed by a /8
- No inferences on pkts: unique payload "signature"
- Lasting 12 days
- Sequential progression in reverse byte order
- Continuous use of new bots
- Stealth: IP progression, speed, use of new bots
- Coordination between sources (global sequential progression and small redundancy)
- Targeting SIP

THANKS

Cooperative Association for Internet Data Analysis University of California San Diego