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Preferential Attachment (PA)

 Popularity Is attractive

 If new connections in a growing network
prefer popular (high-degree) nodes, then
the network has a power-law distribution of
node degrees

— This result can be traced back to 1924 (Yule)



Issues with PA

o Zero clustering

 PA per se is impossible in real networks

— It requires global knowledge of the network
structure to be implemented

 The popularity preference should be exactly
a linear function of the node degree

— Otherwise, no power laws



One solution to these problems

e Mechanism:

— New node selects an existing edge uniformly at
random

— And connects to its both ends

* Results:
— No global intelligence
— Effective linear preference
— Power laws
— Strong clustering

 Dorogovtsev et al., PRE 63:062101, 2001



One problem with this solution

It does not reflect reality

* It could not be validated against growth of
real networks



No model that would:

Be simple and universal (like PA)

— Potentially describing (as a base line)
evolution of many different networks

Yield graphs with observable properties
— Power laws, strong clustering, to start with
— But many other properties as well

Not require any global intelligence
Be validated



Validation of growth mechanism

e State of the art

— Here is my new model
— The graphs that it produces have power laws!

=Ancctong—cicterngs
— And even X!!!

* Almost never the growth mechanism is
validated directly

 PA was validated directly for many
networks, because it is so simple



Paradox with PA validation

e Dilemma
— PA was validated
— But PA Is impossible

e Possible resolution

— PA Is an emergent phenomenon

— A consequence of some other underlying
processes



Popularity versus Similarity

e |Nntuition

— | (new node) connect to you (existing node)
not only If you are popular (like Google or
Facebook), but also if you are similar to me
(like Tartini or free soloing) — homophily

e Mechanism

— New connections are formed by trade-off
optimization between popularity and similarity



Mechanism (growth algorithm)

* Nodes ¢ are introduced one by one
-t@l,2,3, ...

e Measure of popularity
— Node’s birth time ¢

o Measure of similarity

— Upon its birth, node ¢ gets positioned at a random
coordinate 6, in a “similarity” space

— The similarity space is a circle
— 6 1s random variable uniformly distributed on [0,27]
— Measure of similarity between trand sis 8, @ |6,.0 0



Mechanism (contd.)

* New connections
— New node ¢ connects to m existing nodes s, s ? ¢,
minimizing s,
— That Is, maximizing the product between
popularity and similarity
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New node ¢ connects to m existing nodes s that minimize

0
=rS+rt+ln7St

~ x.; — the hyperbolic distance
between s and ¢

New nodes connects to m hyperbolically closest nodes



The expected distance to the m’th closest node from ¢ is

2Ty

R; = 1, —In average degree is fixed to 2m
mm

R, = r, — average degree grows logarithmically with ¢
if§ -2
New node ¢ is located at radial coordinate », ~ In ¢,
and connects to all nodes within distance R,~ r,



Popularityfisimilarity Similarity only
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Clustering

Probability of new connections from ¢ to s so far
p(xse) = O(Ry — xg¢)

If we smoothen the threshold

1 T-o
p(xs) = Xei—Ry > O(R: — xg¢)
14+e T

Then average clustering linearly decreases
with 7 from maximumat 7=0to zeroat 7=1

Clustering is always zeroat 77> 1
The model becomes identical to PAat 7T =~ —




Validation

o Take a series of historical snapshots of a real
network

 Infer angular/similarity coordinates for each
node

o Test If the probability of new connections
follows the model theoretical prediction



Learning similarity coordinates

e Take a historical snapshot of a real network

o Apply a maximum-likelihood estimation method
(e.g., MCMC) using the static hyperbolic model

* Metropolis-Hastings example
— Assign random coordinates to all nodes
— Compute current likelihood L, = | p(x,)* [L- p(x,)]
— Select a random node i<
— Move It to a new random angular coordinate
— Compute new likelihood L,
- If L > L_, accept the move
— If not, accept it with probability L / L.
— Repeat
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connection probability
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Popularityfisimilarity optimization

* Explains PA as an emergent phenomenon
 Resolves all major issues with PA

o Generates graphs similar to real networks
across many vital metrics

* Directly validates against some real networks
— Technological (Internet)
— Social (web of trust)
— Biological (metabolic)



PSO compared to PA

* PA just ignores similarity, which leads to
severe aberrations

— Probability of similar connections is badly
underestimated

— Probability of dissimilar connections is badly
overestimated
 If the connection probability is correctly
estimated, then one immediate application
IS link prediction



Link prediction

e Suppose that some network has zero
temperature

 Then one can predict links with 100%

accuracy!

— Because the connection probability is
eitherOor 1l



Non-zero temperature

e Link prediction is worse than 100%, but it
must be still accurate since the connection
probabillity Is close to the step function

 No global intelligence is required

— At zero temperature, new nodes connect to
exactly the closest nodes

— Non-zero temperature models reality where this
hyperbolic proximity knowledge cannot be exact,
and where it iIs mixed with errors and noise

 PA Is an infinite-temperature regime with
similarity forces reduced to nothing but noise
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