A COORDINATED VIEW OF LARGE-SCALE INTERNET EVENTS

Alistair King
alistair@caida.org
Bradley Huffaker, Alberto Dainotti, kc claffy
CAIDA, UCSD
LARGE-SCALE INTERNET EVENTS
(our focus)

• Events that impact services for a significant section of the Internet
 • Multiple networks/providers
 • Widespread geographic/human impact
• E.g. outages due to Hurricane Sandy; Tohoku Earthquake; malicious scans/attacks; routing hijacks; etc.
EVENT VIEWS
(dimensions)

1. Geographic
 - City, State, Country, etc

2. Network Traffic
 - # packets, # bytes, # sources, etc
 - Visualized using the Cuttlefish tool

http://www.caida.org/tools/visualization/cuttlefish/
EVENT VIEWS
(dimensions)

3. Internet Address Space

- IP address, Address Ranges, Autonomous Systems, etc
- Visualized using *ipv4-heatmap* tool
- Hilbert space-filling curve

- all three dimensions evolve over time

http://maps.measurement-factory.com/software
COORDINATED VIEW
(putting it all together)

- Combine views into a single frame
- Synchronized by time
- Each view augments information shown in others
- Whole is greater than the sum of the parts
CASE STUDIES

(trying it out)

• Two Case Studies:
 • **The sipscan**
 • **Egypt Internet Blackout**

• Data captured by the UCSD Network Telescope (darknet)
 • Sipscan data available at
 http://www.caida.org/data/passive/sipscan_dataset.xml
 • Egypt Internet Blackout data will be released as part of an Educational Dataset at the end of 2012
DARKNETS
(or, Network Telescopes)
THE SIPSCAN
(a case study)

• “/0” scan from a botnet
• February 2011

• Scanning SIP servers with a query on UDP port 5060

A. Dainotti, A. King, K. Claffy, F. Papale, A. Pescapè,
“Analysis of a "/0" Stealth Scan from a Botnet”,
ACM SIGCOMM Internet Measurement Conference 2012
THE SIPSCAN

(why was it interesting?)

• Covered the **entire IPv4 address space** (in **12 days**)

• **Highly Coordinated**
 • Small overlap in targets probed
 • Good coverage

• **Stealthy**
 • Large turnover of geographically distributed bots
 • Reverse byte order increment of target IP
THE SIPSCAN
(why was it interesting?)

• Covered the **entire IPv4 address space** (in 12 days)

• **Highly Coordinated**
 • Small overlap in targets probed
 • Good coverage

• **Stealthy**
 • Large turnover of geographically distributed bots
 • Reverse byte order increment of target IP
EGYPTIAN INTERNET BLACKOUT

(another example)

• Egyptian government ordered Internet censorship

• Most BGP routes to Egyptian networks withdrawn

• 5 days beginning January 27 2011

EGYPTIAN INTERNET BLACKOUT
(and why it is interesting)

• Internet access was denied to an entire country
 ... even to the malware

• Conficker-infected hosts can no longer send packets

• Drop in packets to TCP port 445 observed by the UCSD Network Telescope
CONCLUSIONS

• Applied several Information Visualization techniques to large-scale Internet events.

• Used Multiple Coordinated Views to study temporal evolution along different dimensions.

• Potentially allows insights individual views do not
FUTURE WORK
(where are we going with this?)

• Develop additional views/dimensions to include

• Integrate into near-realtime reporting system for Telescope

• Leverage web frameworks (e.g. D3) for interactive viz

• Improve signal to noise ratio by utilizing different geographic aggregation methods (e.g. Voronoi diagrams)
QUESTIONS?

(suggestions?)

• Animations are available at:
 http://www.caida.org/publications/papers/2012/coordinated_view_internet_events/supplemental/