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Information Sharing
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Information Sharing
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pcap?

• But:
– A lot of data
– Privacy/data protection

• At least agree on
– Capturing method
– Snapsize, filtering
– Clock sync
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Aggregation

• Much less data 
• No privacy issues 
• Not much information 
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Aggregation Examples
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“I see 20% Backscatter”

• Based on which packet attributes? 
• Which rules?
• How many classes?
• Which classes?
• Time intervals?

•  Agree on Classification Rules
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Sampling (Spatial)
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Sampling (temporal)

Exploit Wednesday 10
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Reduce Data, Keep Information
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Entropy

• Darkspace traffic
– Random addresses or ports
– Specific  addresses or ports
– In different combinations ( see J. Treurniet talk)
–  dispersion/concentration in feature distributions

• Dispersion and concentration  entropy
• Q: can we recognize different traffic types in 

darkspace by just looking at entropy?
– IP addresses
– Port numbers
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Related Work

Anomaly detection in light (non-dark) traffic:

• Lee/Xiang 2001
– Information Theoretic Measures for Anomaly Detection

• Feinstein/Schnackenberg 2003
– Detection of DDoS attacks based on source IP entropy

• Lakhina et al.2005
– Detection of scanning, DDoS, outages based on combinations of 

entropy from addresses and ports
• Brauckhoff et al. 2009

– Kullback Leibler divergence
• Ziviani et al. 2007

– Generalized entropy
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ML Entropy Estimation

Total number of observations 

Histogram

[LaCD05] Lakhina, Crovella, Diot: Mining Anomalies Using Traffic Feature 
Distributions. SIGCOMM2005

Definition from [LaCD05]:
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Entropy Example

All packets equal 
 distribution concentrates

Entropy = min
H(X) = 0

Each packet different
 distribution disperses

 Entropy= max
H(X) = log2N

freq

freq

feature i

feature i

H(x)=max

H(x)=min
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Horizontal Scanning

sPort disperses (if many attackers)
dPort concentrates

+
+
+
-sIP disperses (if many attackers) dIP disperses
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Backscatter

sPort concentrates

sIP concentrates (victims) dIP disperses

dPort disperses

-
+
-
+
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Probe

sPort disperses

sIP disperses (attackers, spoofing)

dPort concentrates

dIP concentrates

+
-
+
-
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Expected Entropy Patterns

Multisource
H-Scan

Backscatter Multisource
Probe

V-Scan

sIP disperses concentrates disperses concentrates

dIP (disperses) (disperses) concentrates concentrates

sPort disperses concentrates disperses disperses

dPort concentrates disperses concentrates disperses
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Analysis

• Time Intervals: per hour

• 5 month 
– Nov 2008, Jan/Feb 2011, Jan/Feb 2012

• 4 features
– srcIP, destIP, srcPort, destPort

• 3.5 tools
– iatmon, Corsaro, R, (SiLK)
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Nov 2008
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Details
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Feb 2012
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Jan 2011
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Jan2011
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Discussion

• Entropy
– Based on IP addresses, ports
– Comparable
– Better than packet count, not as good as 

iatmon
• Challenges 

– Small events  generalized entropy
– Nested Events  smaller time intervals, 

sliding window
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A Call for Cooperation

• Cooperation on entropy
– Share data? distributions/hour

• frequencies sufficient, no IP addresses required
– Run tools on your data?

• Joint investigation of Patch Tuesday 
effects
– Do you see similar effects?

• DUST 2013?
– same time period from different darkspaces?
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Thank you!

contact: tanja@caida.org


