FCC Headquarters
26 June, 2013 - Washington DC, USA

Monitoring Large-scale Internet Outages

Alberto Dainotti, Emile Aben*, Alistair King, Karyn Benson, Young Hyun, KC Claffy
alberto@caida.org

Cooperative Association for Internet Data Analysis
University of California, San Diego
*RIPE NCC
ANALYSIS OF INTERNET OUTAGES

Combining different measurement sources

• BGP
 - BGP updates from route collectors of **RIPE-NCC RIS** and **RouteViews**

• Active Traceroute Probing
 - Archipelago Measurement Infrastructure (**ARK**)
 - **RIPE-NCC Atlas**

• Internet Background Radiation (IBR)
 - Traffic reaching the **UCSD Network Telescope**

• more data sources to come...
CASE STUDIES

Different for causes/tech implications/impact

• Country-level Internet Blackouts (BGP withdrawals, packet-filtering, satellite-signal jamming, ...

• Natural disasters affecting the infrastructure/population (earthquakes, hurricanes, ...)

Egypt, Jan 2011
Government orders to shut down the Internet

Japan, Mar 2011
Earthquake of Magnitude 9.0
THE EVENTS (1/3)

Internet Disruptions in North Africa

• Egypt
 - January 25th, 2011: protests start in the country
 - The government orders service providers to “shut down” the Internet
 - January 27th, around 22:34 UTC: several sources report the withdrawal in the Internet’s global routing table of almost all routes to Egyptian networks
 - The disruption lasts 5.5 days

• Libya
 - February 17th, 2011: protests start in the country
 - The government controls most of the country’s communication infrastructure
 - February 18th (6.8 hrs), 19th (8.3 hrs), March 3rd (3.7 days): three different connectivity disruptions:

Jan 25 | Jan 27 22:12 (5.5 days) | Feb 17 | Feb 18 23:15 (6.8 hours) | Feb 19 21:55 (8.3 hours) | Mar 03 16:57 (3.7 days)
NETWORK INFO
Prefixes, ASes, Filtering

• Egypt
 - 3165 IPv4 and 6 IPv6 prefixes are delegated to Egypt by AfriNIC
 - They are managed by 51 Autonomous Systems
 - Filtering type: BGP only

• Libya
 - 13 IPv4 prefixes, no IPv6 prefixes
 - 3 Autonomous Systems operate in the country
 - Filtering type: mix of BGP, packet filtering, satellite signal jamming

A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa, M. Russo, A. Pescapè,
“Analysis of Country-wide Internet Outages Caused by Censorship”
ACM SIGCOMM Internet Measurement Conference 2011
BGP

prefix reachability

- We reconstruct prefixes losing and regaining reachability
 - we build the routing history of every collector’s peer for each collector
 - using both RIBs and UPDATES
 - we mark a prefix as disappeared if it is withdrawn in each routing history

Egyptian disconnection and reconnection NOTE: IPv6 routes stayed up!
BGP
per-AS analysis

• A detailed analysis shows there is synchronization among ASes

Detail of Egyptian disconnection/reconnection: 6 major ASes
IBR

“Extracting benefit from harm..”

• Use Internet Background Radiation (IBR) generated by malware-infected hosts as a “signal”
UCSD TELESCOPE
when malware helps.

- Unsolicited traffic, a.k.a. Internet Background Radiation - e.g. scanning from conficker-infected hosts - from the observed country reveals several aspects of these outages!

[Graphs showing packet rates over time for Egypt and Libya with labeled outages and Denial of Service attacks.]
RANDOM PROBING

E.g., Conficker

Cooperative Association for Internet Data Analysis
University of California San Diego
BACKSCATTER

e.g., SYN+ACK replies to spoofed SYN

Cooperative Association for Internet Data Analysis
University of California San Diego

www.caida.org
EGYPT

IBR: dissecting it

![Graph showing traffic patterns]
EGYPT

IBR: rate of distinct src IPs vs packet rate
The sample case of EgAS7 shows the consistency between telescope traffic and BGP measurements.
TELESCOPE vs BGP
Complementarity

• Contrasting telescope traffic with BGP measurements revealed a mix of blocking techniques that was not publicized by others
• The second Libyan outage involved overlapping of BGP withdrawals and packet filtering

![Graph showing BGP data and packet rates over time for Libya.](image)
ACTIVE MEASUREMENTS
ARK + ATLAS

• CAIDA ARCHIPELAGO (ARK)
 - Coordinate traceroute-based topology measurement probing the full routed IPv4 address space

 http://www.caida.org/projects/ark/

• RIPE ATLAS
 - traceroutes/pings to fixed destinations
 - user-defined measurements (a community-oriented tool)

 https://atlas.ripe.net/
ARK active measurements

• ARK active measurements are consistent with other sources
 - limitation due to frequency of probes and because they target random addresses
 - the first two Libyan outages are not visible
 - we used them only to test reachability, not to analyze topology
Third Libyan outage: while BGP reachability was up, most of Libya was disconnected
- ARK measurements confirmed the finding from the telescope
 1) disconnection
 2) identification of some reachable networks
suggesting the use of packet filtering by the censors
SATELLITE CONNECTIVITY

probable signal jamming

• Third Libyan outage
 - A Libyan IPv4 prefix managed by SatAS1 was BGP-reachable
 - Only a small amount of traffic from that prefix reaches the telescope during the outage

Libya: Telescope traffic from national operator and satellite-based ISP
THE EVENTS (2/3)

Earthquakes

- **Christchurch - NZ**
 - February 21st, 2011 23:51:42 UTC
 - Local time 22nd, 12:51:42 PM
 - Magnitude: 6.1

- **Tohoku - JP**
 - March 11th, 2011 05:46:23 UTC
 - Local time 02:46:23 PM
 - Magnitude: 9.0

We used MaxMind GeoLite City DB to compute distance from a given network to the epicenters

A. Dainotti, R. Amman, E. Aben, K. C. Claffy,
“Extracting Benefit from Harm: Using Malware Pollution to Analyze the Impact of Political and Geophysical Events on the Internet”
ACM SIGCOMM Computer Communication Review, Jan 2012
A SIMPLE METRIC
to evaluate impact and extension

- \(I_{\Delta t_i} \) number of distinct source IP addresses seen by the telescope over the interval \(\Delta t_i \),
- \(\Delta t_1, \ldots, \Delta t_n \) 1-hour time slots following the event
- \(\Delta t_{-1}, \ldots, \Delta t_{-n} \) 1-hour time slots preceding the event

\[
\theta = \frac{\sum_{i=-1}^{-24} I_{\Delta t_i}}{\sum_{j=1}^{24} I_{\Delta t_j}}
\]
RADIUS OF IMPACT

rough estimate based on θ

- We compute θ for address ranges geolocated at different distances from the epicenter of the earthquake (0 to 500km in bins of 1km each).
- θ around 1 indicates no substantial change in the number of unique IP addresses observed in IBR before and after the event.

Christchurch

![Graph showing the ratio of distinct IPs before and after the earthquake for different distances from the epicenter.](image)

- $(x=20, y=2.4)$
RADIUS OF IMPACT

rough estimate based on θ

We call ρ_{max} the maximum distance at which we observe a value of θ significantly > 1
EXTENSION OF IMPACT
geo coordinates of most affected networks

Networks within each respective ρ_{max}

(a) Christchurch
(b) Tohoku
“MAGNITUDE”

A measure of impact

• Varying the radius, we pick the highest value of θ calculated for the whole set of networks within the corresponding circle

<table>
<thead>
<tr>
<th>Magnitude (θ_{max})</th>
<th>Christchurch</th>
<th>Tohoku</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius (ρ_{max})</td>
<td>2 at 6km</td>
<td>3.59 at 137km</td>
</tr>
<tr>
<td></td>
<td>20km</td>
<td>304km</td>
</tr>
</tbody>
</table>
IP RATE IN TIME
reflects the dynamics of the event

Christchurch

Tohoku

Cooperative Association for Internet Data Analysis
University of California San Diego
EVALUATING \(\Theta \)

variations over a long time period

- 2 months period of observation
- \(\Theta \) normally stays within [0.7 - 1.3]

![Graph of Christchurch](image1.png)

![Graph of Tohoku](image2.png)
THE EVENTS (3/3)

Hurricane Sandy

• Atlantic, Caribbean, US east coast
 - October 22nd - 31st, 2012
SANDY: IS IT DIFFERENT?
(compared to our previous case studies)

- Movement over a large area
 - with no fixed epicenter like an earthquake has

- High level of Internet penetration in the affected region, including major hubs for international Internet connectivity

- Disruption was limited to only a subset of networks/hubs in the affected region, making it harder to identify geographic areas of massive impact

- For the 1st time we tried to measure in realtime
IBR: SANDY IN NYC

Reusing the same metric based on ratio of distinct source IPs
IBR: NY, HOME vs BUSINESS

Different impact on home vs business users*

* according to NetAcuity
www.digitalelement.com/NetAcuity
ATLAS: RTT

Sandy Landfall

Probes to dst 1017, relative rtt trends

2787 NJ AS19262
1158 NJ AS33659
1123 NJ AS33659
1189 NYC AS6128
1193 NYC AS33659
1144 NYC AS27537
1134 NYC AS12271
585 NYC AS19750
427 NYC AS12271
426 NYC AS6939
2799 PHL AS36733
2789 PHL AS36733
2788 PHL AS36733
2297 PHL AS33287
2295 PHL AS36733

Cooperative Association for Internet Data Analysis
University of California San Diego
ATLAS: PATH CHANGES

Looking at two major hubs

- New York City (NYC) is a major Internet connectivity hub
- Ashburn/Washington DC (ASH) is the other for US-Europe traffic
ATLAS: PATH CHANGES

dst: ns.ripe.net / AS3333 / NL
ATLAS: NYC PATH CHANGES

dst: ns.ripe.net / AS3333 / NL
pre: 22:00 UTC vs. post: 09:00 UTC
ATLAS: LATENCY

RTT US -> AS3333/NL (+20 ms)
THANKS