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Preferential Attachment (PA)

 Popularity Is attractive

 If new connections in a growing network
prefer popular (high-degree) nodes, then
the network has a power-law distribution of
node degrees

— This result can be traced back to 1924 (Yule)



Issues with PA

o Zero clustering

 PA per se is impossible in real networks

— It requires global knowledge of the network
structure to be implemented

 The popularity preference should be exactly
a linear function of the node degree

— Otherwise, no power laws



One solution to these problems

e Mechanism:

— New node selects an existing edge uniformly at
random

— And connects to its both ends

* Results:
— No global intelligence
— Effective linear preference
— Power laws
— Strong clustering

 Dorogovtsev et al., PRE 63:062101, 2001



One problem with this solution

It does not reflect reality

* It could not be validated against growth of
real networks



No model that would:

Be simple and universal (like PA)

— Potentially describing (as a base line)
evolution of many different networks

Yield graphs with observable properties
— Power laws, strong clustering, to start with
— But many other properties as well

Not require any global intelligence
Be validated



Validation of growth mechanism

e State of the art

— Here is my new model
— The graphs that it produces have power laws!

=Ancctong—cicterngs
— And even X!!!

* Almost never the growth mechanism is
validated directly

 PA was validated directly for many
networks, because it is so simple



Paradox with PA validation

e Dilemma
— PA was validated
— But PA Is impossible

e Possible resolution

— PA Is an emergent phenomenon

— A consequence of some other underlying
processes



Popularity versus Similarity

e |Nntuition

— | (new node) connect to you (existing node)
not only If you are popular (like Google or
Facebook), but also if you are similar to me
(like Tartini or free soloing) — homophily

e Mechanism

— New connections are formed by trade-off
optimization between popularity and similarity



Mechanism (growth algorithm)

* Nodes ¢ are introduced one by one
-t=1,2,3, ...

e Measure of popularity
— Node’s birth time ¢

o Measure of similarity

— Upon its birth, node ¢ gets positioned at a random
coordinate 6, in a “similarity” space

— The similarity space is a circle
— 6 1s random variable uniformly distributed on [0,27]
— Measure of similarity between trand s is 8, = |6.— 0



Mechanism (contd.)

* New connections
— New node ¢ connects to m existing nodes s, s < ¢,
minimizing s,
— That Is, maximizing the product between
popularity and similarity



New node ¢ connects to m existing nodes s that minimize

0
=rS+rt+ln7St

~ x.; — the hyperbolic distance
between s and ¢

New nodes connects to m hyperbolically closest nodes



New nodes connects to m hyperbolically closest nodes

The expected distance to the m’th closest node from ¢ is

i T +1n@zr
2(1-¢) |

2
New node ¢ Is located at radial coordinate », ~ In ¢,
and connects to all nodes within distance R,~ r,

thln



New node
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Validation

o Take a series of historical snapshots of a real
network

 Infer angular/similarity coordinates for each
node

o Test If the probability of new connections
follows the model theoretical prediction
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Popularityxsimilarity optimization

* Explains PA as an emergent phenomenon
* Resolves all major issues with PA

 Generates graphs similar to real networks
across many vital metrics

* Directly validates against some real networks
— Technological (Internet)
— Social (web of trust)
— Biological (metabolic)
— Universe



PSO compared to PA

 PA justignores similarity (or hidden space),
which leads to severe aberrations

— Probability of similar (spatially close) connections
IS badly underestimated

— Probability of dissimilar (spatially distant)
connections Is badly overestimated
 |f the connection probability is correctly
estimated, then one immediate application is
Ink prediction
 PSO-based missing link prediction in the
nternet outperforms all popular methods




Bottom line

 PA Is a degenerate (infinite-temperature)
regime with similarity/homophily factors
reduced to nothing but noise

e |f we take these factors into account, then

— We can predict large-scale growth dynamics
of real networks with a remarkable accuracy

— This growth dynamics has seemingly nothing
to do with PA (optimization vs. randomness)

— Yet if one looks only at degree-based
statistics, there is no difference
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