

## Inferring Complex AS Relationships

Vasileios Giotsas, Matthew Luckie, Bradley Huffaker, kc claffy vgiotsas@caida.org CAIDA – University of California San Diego

ACM SIGCOMM Internet Measurement Conference 2014, Vancouver, Canada, November 2014

#### Criticism on relationships inference



- Traditional relationships abstraction is simplistic:
  - Provider-to-customer (p2c)
  - Peer-to-peer (p2p)
  - Sibling-to-sibling (s2s)
- More complex relationships cannot be represented
  - Simplistic abstraction leads to artifacts / misleading results
  - Is it possible to infer more complex relationships?



#### Contributions

- Develop a new inference algorithm to infer two types of complex relationships:
  - Partial transit
  - Hybrid (dual transit/peering)
- Validate inferences against three sources of data:
  - Partial transit 97% PPV
  - Hybrid 93% PPV
- Infer relatively large number of complex relationships
  ~5% of p2c

#### Partial transit relationships



- Provider-to-customer relationship with restricted scope
- Partial provider offers discounted transit to its customers and peers, but not its providers<sup>1</sup>



<sup>1</sup>W. Norton. Partial Transit (Regional). http://drpeering.net/white-papers/Art-Of-Peering-The-Peering-Playbook.html#7



#### Hybrid relationships

 Two ASes establish different relationship type at different Points of Presence (PoPs)<sup>2</sup>



Data needed to describe complex relationships

- AS Relationships
- Prefix export policies
- Locations of interconnection points





#### Inference methodology

Use IMC 2013 algorithm<sup>3</sup> to infer conventional relationships
 Both *partial transit* and *hybrid* relationships are inferred as *p2c*

2. For each **p2c** link infer provider's per-prefix export policy

- Full Transit
- Partial Transit
- Candidate Hybrid
- 3. For each *candidate hybrid* link geo-locate the ingress PoPs

4. Correlate export policies with PoPs

→ If distinct PoPs exhibit distinct export policies infer hybrid link



## Inference methodology

I. Use IMC 2013 algorithm<sup>3</sup> to infer conventional relationships
Both partial transit and hybrid relationships are inferred as *p2c*

#### 2. For each **p2c** link infer provider's *per-prefix* export policy

- Full Transit
- Partial Transit
- Candidate Hybrid
- 3. For each *candidate hybrid* link geo-locate the ingress PoPs
- 4. Correlate export policies with PoPs
- → If distinct PoPs exhibit distinct export policies infer hybrid link



#### Step 2: Per-prefix inference of export policy

- Find how the provider exports each prefix it receives from the customer
- Select the least restrictive policy that explains the observed behaviour





### Inference methodology

I. Use IMC 2013 algorithm<sup>3</sup> to infer conventional relationships
Both *partial transit* and *hybrid* relationships are inferred as *p2c*

- 2. For each **p2c** link infer provider's per-prefix export policy
  - Full Transit
  - Partial Transit
  - Candidate Hybrid Different export policy for different prefixes

Same export policy for all the prefixes

3. For each candidate hybrid link geo-locate the ingress PoPs
4. Correlate export policies with PoPs
→ If distinct PoPs exhibit distinct export policies infer hybrid link



## Inference methodology

I. Use IMC 2013 algorithm<sup>3</sup> to infer conventional relationships
Both partial transit and hybrid relationships are inferred as *p2c*

2. For each *p2c* link infer provider's *per-prefix* export policy
Full Transit

- Partial Transit
- Candidate Hybrid

3. For each *candidate hybrid* link geo-locate the ingress PoPs

4. Correlate export policies with PoPs

→ If distinct PoPs exhibit distinct export policies infer hybrid link



#### Step 3: PoP Geo-location





## Inference methodology

I. Use IMC 2013 algorithm<sup>3</sup> to infer conventional relationships
Both partial transit and hybrid relationships are inferred as *p2c*

2. For each **p2c** link infer provider's per-prefix export policy

- Full Transit
- Partial Transit
- Candidate Hybrid
- 3. For each *candidate hybrid* link geo-locate the ingress PoPs

# 4. Correlate export policies with PoPs → If distinct PoPs exhibit distinct export policies infer hybrid link



#### Validation

|               | Hybrid                  |           |           | Partial-Transit         |           |           |
|---------------|-------------------------|-----------|-----------|-------------------------|-----------|-----------|
|               | True-Pos                | False-Pos | False-Neg | True-Pos                | False-Pos | False-Neg |
| Direct Report | 33                      | 2         | I         | 2                       | 0         | 0         |
| Communities   | 124                     | 10        | 4         | 158                     | 5         | 0         |
| RPSL          | 45                      | -         | -         | 38                      | -         | -         |
| Validated     | 214 / 1,071:20.0%       |           |           | 203 / 2,955: 6.9%       |           |           |
| Confirmed     | 202 / 1,071: 18.9%      |           |           | 198 / 2,955: 6.7%       |           |           |
| PPV           | 157 / 169: <b>92.9%</b> |           |           | 160 / 165: <b>97.0%</b> |           |           |



#### Limitations

- Topology incompleteness problem
  - We can only model what we can see
- City-level geolocation granularity
  - Hybrid links within the same city can be hidden
- Difficult to neatly categorize complex relationships



#### Results

- 90,272 p2c relationships inferred for March 2014
  - 2,955 (3.3%) partial transit relationships
  - 1,071 (1.2%) hybrid relationships
- Hybrid relationships not only between large ASes
  - >50% of hybrid relationships involve AS with customer cone size < 5 ASes
  - >65% of hybrid relationships involve AS with traffic levels < 100 Gbps
- Hybrid relationships can be unintentional
  - Configuration errors
  - Open peering policies at route servers<sup>5</sup>



#### Conclusion

- AS relationship inference algorithms limited by their simplistic relationship abstraction
- Implement and validate a new inference algorithm to capture partial transit and hybrid relationships with high accuracy
- Complex relationships not only among top ASes



#### Thank you for your attention!

#### Questions?



#### **PoP Geo-location**





#### **PoP Geo-location**



| 2914 3491 133741                                         | US MSA origins (2914:10)  |                             |  |  |
|----------------------------------------------------------|---------------------------|-----------------------------|--|--|
| 120, 250, 0, 11, from 120, 250, 0, 11, (120, 250, 0, 12) | 2914:1001 Ashburn, VA     | 2914:1007 Seattle, WA       |  |  |
| 129.250.0.11 11000 129.250.0.11 (129.250.0.12)           | 2914:1001 Sterling, VA    | 2914:1008 Milpitas, CA      |  |  |
| Origin IGP, metric 6,                                    | 2914:1002 Atlanta, GA     | 2914:1008 Mountain View, CA |  |  |
| localpref 100, valid, external                           | 2914:1003 Chicago, IL     | 2914:1008 Palo Alto, CA     |  |  |
| Community: 2914:420 2914:1008                            | 2914:1004 Dallas, TX      | 2914:1008 San Jose, CA      |  |  |
| 2914.2000 2914.3000                                      | 2914:1004 Houston, TX     | 2914:1008 Santa Clara, CA   |  |  |
|                                                          | 2914:1005 Los Angeles, CA | 2914:1009 New York, NY      |  |  |
| rx patnia: 0, tx patnia: 0                               | 2914:1006 Miami, FL       |                             |  |  |

#### RouteViews BGP Data

NTT support center



#### **PoP Geo-location**



1 ge5-1.core1.fmt1.he.net (64.62.134.129)
2 10ge1-1.core1.pao1.he.net (184.105.213.66)
3 10ge11-6.core1.Lax1.he.net (72.52.92.22) → Los Angeles, CA, US
4 lap.ln.net (198.32.146.10)
5 130.152.181.189
6 130.152.183.4

#### CAIDA's DNS Decoding Database: <u>http://ddec.caida.org/</u>



22

#### PoP Geo-location



- Last-resort geo-location (optimised for end hosts)
- Neacuity found to be more accurate than other similar databases<sup>5</sup>

#### Obtaining traceroute paths

- Ark:
  - 94 monitors
  - 84 Ases
  - 39 countries
- Traceroute servers
  - 2,509 public traceroute servers
  - 507 ASes

• 77 countries



#### Selecting traceroute Vantage Points (VPs)







#### Hybrid relationships

 Two ASes establish different relationship type at different Points of Presence (PoPs)<sup>2</sup>





# Step 4: Label PoPs according to export policies





#### **Overall inference methodology**

Use IMC 2013 algorithm<sup>3</sup> to infer conventional relationships
 Both *partial transit* and *hybrid* relationships are inferred as *p2c*

2. For each **p2c** link infer provider's *per-prefix* export policy

- Full Transit
- Partial Transit
- Candidate Hybrid
- 3. For each *candidate hybrid* link geo-locate the ingress PoPs
- 4. Correlate export policies with PoPs

→If distinct PoPs exhibit distinct export policies infer *hybrid link*