
 .
bgpstream.caida.org - github.com/CAIDA/bgpstream

1

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Design goals:
-Efficiently deal with large amounts of distributed BGP data
-Offer a time-ordered data stream of data from heterogeneous sources
-Support near-realtime data processing
-Target a broad range of applications and users
-Scalable
-Easily extensible

•A software framework for historical and live BGP data analysis 

PYBGPSTREAM
Example: studying AS path inflation

2

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

How many AS paths are longer
than the shortest path between
two ASes due to routing policies?
(directly correlates to the increase
in BGP convergence time)

BGPCORSARO
Example: monitor your own address space on BGP

3

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Time (UTC)

Origin ASes [y2]# Prefixes [y1]

26. Jan5. Jan 12. Jan 19. Jan
0

20

40

60

80

100

0

1

2

#
 p

re
fi
x
e

s

#
 o

rig
in

 A
S

e
s

Figure 6: Monitoring of GARR (AS195) IP space using
the pfxmonitor plugin. The green line reports the number of
unique prefixes announced over time, the blue line reports the
number of unique origin ASes that are currently announcing such
prefixes. The spikes of the origin AS timeseries identify four hi-
jack events in which AS 198596 announces part of the IP space
belonging to AS195.

Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end
of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis of
historical or live data streams. In Section 7, we describe
a deployment of BGPCorsaro that runs 24/7 as a part
of our global Internet monitoring infrastructure.

As a sample plugin, we describe a stateful plugin that
monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.

We used this plugin to process data from all avail-
able Route Views and RIPE RIS collectors, for January
2015, setting the time bin size to 5 minutes, and pro-
viding as input to the plugin the IP ranges covered by
the 78 prefixes originated by AS137 (GARR, the Ital-

ian Academic and Research Network) as observed on
January 1st, 2015. Figure 6, shows a graphical repre-
sentation of the two time-series generated by the plugin:
the number of unique announced prefixes (in green) and
number of unique origin ASNs (in blue). While a small
oscillation of the number of prefixes announced is ex-
pected (as prefixes can be announced as aggregated or
de-aggregated), in 4 cases the number of unique an-
nouncing ASes shifts from 1 to 2, for about 1 hour.
Through manual analysis, we found that, during these
spikes, a portion of GARR’s IP space (specifically, 7
/24 prefixes) was also announced by TehnoGrup (AS
198596), a Romanian AS that appears to have no re-
lationship with GARR. The event on January 7th is
reported as an hijack attack by Dyn Research [29], and
given the similar nature of the other three events visible
in the graph (1st, 7th and 8th of January), the plugin
output suggests that three additional attacks occurred.
Although this approach cannot detect all types of hi-
jacking attacks, it is still a valid method to identify
suspicious events and serves to demonstrate the capa-
bilities of BGPCorsaro.

7. MONITORING THE GLOBAL INTERNET

In this section, we describe how we use BGPStream to
develop and deploy our global BGP monitoring infras-
tructure supporting research into macroscopic Internet
events. The purpose of this section is (i) to highlight
how BGPStream enables the development of a complex
monitoring system with stringent requirements, and (ii)
to exemplify how additional challenges that arise in such
complex BGP monitoring tasks — and which we do not
address by-design in BGPStream – can be solved.

In the IODA research project [13], we constantly mon-
itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [11] [12]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.

Another class of events that we are interested in de-
tecting and analyzing is BGP-based traffic hijacking
[10]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed

9

The “prefix-monitor” plugin
(distributed with source) 
monitors a set of IP ranges as
they are seen from BGP monitors
distributed worldwide:
- how many prefixes announced
- how many origin ASes
- generates detailed logs

Hijacking of AS137 (GARR) - Jan 2015*

*Originally discovered by Dyn: 
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/ 

