
Chiara Orsini, Alistair King, Alberto Dainotti, 
alberto@caida.org

Center for Applied Internet Data Analysis
University of California, San Diego

BGPStream: a framework for historical
analysis and real-time monitoring of BGP data

w w w .caida.org

mPlane Workshop  
30th Nov 2015, Heidelberg, DE

mailto:alberto@unina.it?subject=

MEASURING BGP
Why?

2

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

BGP is the central nervous system of the Internet

BGP’s design is known to contribute to issues in: 

•Availability
-Labovitz et al. “Delayed Internet Routing Convergence”, IEEE/ACM Trans. Netw., 2001.
-Varadhan et al. “Persistent Route Oscillations in Inter-domain Routing”. Computer Networks, 2000.
-Katz-Bassett et al. “LIFEGUARD: Practical Repair of Persistent Route Failures”, SIGCOMM, 2012.

•Performance
-Spring et al. “The Causes of Path Inflation”. SIGCOMM, 2003.

•Security
-Zheng et al. “A Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks in Realtime”.
SIGCOMM, 2007.

Need to engineer protocol evolution!

MEASURING BGP
Why?

3

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•AS-level topology
-Gregori et al. “On the incompleteness of the AS-level graph: a novel methodology for BGP route
collector placement”, IMC 2012

•AS relationships
-Giotsas et al. “Inferring Complex AS Relationships”, IMC 2014

•AS interactions: driven by relationships, policies, network conditions,  
 operator updates

-Anwar et al. “Investigating Interdomain Routing Policies in the Wild ”, IMC 2015
-Lychev et al. “BGP Security in Partial Deployment: Is the Juice Worth the Squeeze?”, SIGCOMM 2013

Defining problems and make protocol engineering decisions through  
realistic evaluations is difficult also because we know little about the
structure and dynamics of the BGP ecosystem!

MEASURING BGP

4

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

1. Literature shows that we need more/better data
•more info from the protocol/routers  

Generation

Collection

Injection

Processing
& Analysis

Attempts to generate more info  
(not much traction in the past):
•RFC 4384 BGP Communities for Data Collection
•draft-ymbk-grow-bgp-collector-communities

two issues - somehow related

MEASURING BGP

5

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

1. Literature shows that we need more/better data
•more info from the protocol/routers, more collectors, 

Generation

Collection

Injection

Processing
& Analysis

Attempts to generate more info  
(not much traction in the past):
•RFC 4384 BGP Communities for Data Collection
•draft-ymbk-grow-bgp-collector-communities

two issues - somehow related

MEASURING BGP

6

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

1. Literature shows that we need more/better data
•more info from the protocol/routers, more collectors, more experimental
testbeds, … 

Generation

Collection

Injection

Processing
& Analysis

Inject/Receive Routes & Traffic.  
PEERING - http://peering.usc.edu
Schlinker et al. “PEERING: An AS for
Us”, HotNets 2014

Attempts to generate more info  
(not much traction in the past):
•RFC 4384 BGP Communities for Data Collection
•draft-ymbk-grow-bgp-collector-communities

two issues - somehow related

MEASURING BGP

7

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

1. Literature shows that we need more/better data
•more info from the protocol/routers, more collectors, more experimental
testbeds, … 

2. But we also need better tools to learn from the data
•to make data analysis: easier, faster, able to cope with BIG and heterogeneous data
•to monitor BGP in near-realtime
•tightening data collection, processing, visualization, …

Generation

Collection

Injection

Processing
& Analysis

libBGPdump 
https://bitbucket.org/ripencc/bgpdump

two issues - somehow related

MEASURING BGP

8

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

1. Literature shows that we need more/better data
•more info from the protocol/routers, more collectors, more experimental
testbeds, … 

2. But we also need better tools to learn from the data
•to make data analysis: easier, faster, able to cope with BIG and heterogeneous data
•to monitor BGP in near-realtime
•tightening data collection, processing, visualization, …

two issues - somehow related

Generation

Collection

Injection

Processing
& Analysis

9
w w w .caida.org

•Country-level Internet Blackouts 
 during the Arab Spring 

•Natural disasters affecting
the infrastructure

Egypt, Jan 2011
Government orders
to shut down the
Internet

Japan, Mar 2011
Earthquake of
Magnitude 9.0

(a) Christchurch (b) Tohoku

Figure 5: Networks selected within the estimated maximum radius of im-
pact of the earthquake (20km for Christchurch and 304km for Tohoku). We
based our geolocation on the publicly available MaxMind GeoLite Country
database.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300
 320

 340
 360

 380
 400

 420
 440

 460
 480

 500

θ
 -

R
at

io
 o

f d
is

tin
ct

 IP
s

be
fo

re
/a

fte
r e

ar
th

qu
ak

e

Km

(x=137,y=3.59)

(x=6,y=2.0)

Christchurch Tohoku

Figure 6: Measuring the impact of the earthquake on network connectivity
as seen by the telescope: value of ✓ for all networks within a given range
from the epicenter. The peak value ✓max reached by ✓ can be considered
the magnitude of the impact.

kilometers from its epicenter, consistent with the stronger magni-
tude of Tohoku’s earthquake (see Table ??) and news reports re-
garding its impact on buildings and power infrastructure. Table ??
summarizes these indicators found for both earthquakes.

Christchurch Tohoku
Magnitude (✓max) 2 at 6km 3.59 at 137km
Radius (⇢max) 20km 304km

Table 3: Indicators of earthquakes’ impact on network connectivity as ob-
served by the UCSD network telescope.

IBR traffic also reveals insight into the evolution of the earth-
quake’s impact on network connectivity. Figure ?? plots the num-
ber of distinct source IPs per hour of packets reaching the telescope
from networks within the �max = 20 km radius from the epicenter
of Christchurch’s earthquake. All times are in UTC. The time range
starts approximately one week before the earthquake and ends two
weeks after. We would not expect the IBR traffic to drop to zero,
for two reasons. First, not all networks are necessarily disabled by
the earthquake. Second, the geolocation database services we use
are not 100% accurate.

For a few days before the event, peaks are always above 140
unique IP addresses per hour (IPs/hour) on weekdays, sometimes
above 160 IPs/hour. In the 24 hours after the earthquake, the rate
drops, with a peak slightly above 100 IPs/hour. The IPs/hour rate

climbs slowly, reaching pre-event levels only after a week, which
correlates with the restoration of power in the Christchurch area [?].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

02-18 00:00

02-20 00:00

02-22 00:00

02-24 00:00

02-26 00:00

02-28 00:00

03-02 00:00

03-04 00:00

N
u
m

b
e
r

o
f
d
is

tin
ct

 I
P

s
p
e
r

h
o
u
r

EARTHQUAKE

Figure 7: Rate of unique source IP addresses found in unsolicited traffic
reaching the UCSD network telescope from networks geolocated within a
⇢max = 20km range from the Christchurch earthquake epicenter. The
rate of distinct IPs per hour drops immediately after the earthquake. Peaks
before the earthquake were above 140-160 IPs/hour on weekdays (weekend
is on 19-20 February), while the first peak after the earthquake is slightly
above 100 IPs/hour. Levels remain lower for several days, consistent with
the slow restoration of power in the area.

Figure ?? plots the same graph for IBR traffic associated with the
Tohoku earthquake, within a maximum distance �max = 304 km
from the epicenter. The much steeper drop in the number of unique
IPs per hour sending IBR traffic is consistent with the Tohoku earth-
quake’s much larger magnitude than that of the Christchurch earth-
quake. In the days after the event the IBR traffic starts to pick up
again, but does not reach the levels from before the event during
the analyzed time interval, also consistent with the dramatic and
lasting impact of the Tohoku earthquake on Northern Japan.

 100

 200

 300

 400

 500

 600

 700

 800

03-04 00:00

03-06 00:00

03-08 00:00

03-10 00:00

03-12 00:00

03-14 00:00

03-16 00:00

03-18 00:00

03-20 00:00

03-22 00:00

N
u
m

b
e
r

o
f
d
is

tin
ct

 I
P

s
p
e
r

h
o
u
r

EARTHQUAKE

Figure 8: Rate of unique source IP addresses found in unsolicited traffic
reaching the UCSD network telescope from networks geolocated within
⇢max = 304km of the Tohoku earthquake epicenter. The rate of distinct
IPs per hour shows a considerable drop after the earthquake which does not
return to previous levels even after several days.

Figures ?? and ?? show that the rate of unique IP addresses per
hour observed by the telescope matches the dynamics of the earth-
quakes, reflecting their impact on network connectivity. In order to

EPICENTER

Center for Applied Internet Data Analysis 
University of California San Diego

Dainotti et al. “Analysis of Country-wide  
Internet Outages Caused by Censorship”  
IMC 2011

Dainotti et al. “Extracting Benefit from
Harm: Using Malware Pollution to Analyze
the Impact of Political and Geophysical
Events on the Internet”  
SIGCOMM CCR 2012

INSPIRING PROJECTS (1/2)
IODA: Detection and Analysis of Internet Outages

www.caida.org/funding/ioda/

10

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Country-wide Internet outages in Iraq that the government ordered
in conjunction with the ministerial preparatory exams - Jul 2015

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

#
 p

re
fix

e
s #

 p
re

fixe
s

Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete com-
plete rather than expired.

The BGPViewServer is a potential bottleneck in our
distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.

In Figure 10, we show the output of the per-country
and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15, 18].

Similarly, we developed consumers that continuously
analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.

As mentioned (Section 2), BGPStream development
is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/

12

www.caida.org/funding/ioda/

INSPIRING PROJECTS (1/2)
IODA: Detection and Analysis of Internet Outages

IODA: Detection and Analysis of Internet Outages

11

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

of

 P
re

fix
es

of

 U
ni

qu
e

So
ur

ce
 IP

s

Outage of AS11351(Time Warner Cable LLC)
September 30, 2015

INSPIRING PROJECTS (1/2)

www.caida.org/funding/ioda/

BEFORE IODA

12
w w w .caida.org

Center for Applied Internet Data Analysis 
University of California San Diego

post-event manual analysis

Egypt, Jan 2011
Government orders
to shut down the
Internet

4 months of work

Dainotti et al. “Analysis of Country-wide Internet Outages
Caused by Censorship” IMC 2011

IODA TODAY
live Internet monitoring

13

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Last Christmas we made it
possible for anybody to
follow the North Korean
disconnection almost live

https://charthouse.caida.org/public/kp-outage

Hijacks: detection of MITM BGP attacks

14
w w w .caida.org

14

source (poisoned) attacker

normal path
hijacked path

S

D A

S D dest (hijacked prefix) A

normal path  
used to complete 
the attack

www.caida.org/funding/hijacks/

INSPIRING PROJECTS (2/2)

 .
overview

15

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Design goals:
-Efficiently deal with large amounts of distributed BGP data
-Offer a time-ordered data stream of data from heterogeneous sources
-Support near-realtime data processing
-Target a broad range of applications and users
-Scalable
-Easily extensible

•A software framework for historical and live BGP data analysis 

 .
it’s real!

16

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•bgpstream.caida.org
•download it! (version 1.0)
•active development - github.com/caida/bgpstream
•Docs & Tutorials

•paper under submission at NSDI ’16 (tech report on web site)
•people are using it!
•coordination with RouteViews, Colorado State BGPMon, RIPE NCC
•BGP Hackathon in February

 .
overview

17

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

 .
different applications and development paradigms

18

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

LIBBGPSTREAM
C API

PYBGPSTREAM
C Python bindings

Efficiency

Ea
se

 o
f u

se

BGPCORSARO
tool + plugins

BGPREADER
command line tool

TERMINOLOGY
background and naming conventions

19

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•Adj-RIB-Out etc. [RFC 4271]
•Collectors: RIB and Updates dumps
•VPs
•Partial vs Full-feed VPs
•…

Figure 1: BGP collection process illustrated. Once a BGP
collector establishes a BGP session with a VP, it maintains a state
and an image of the VP’s Adj-RIB-out table derived from the
updates received through the session. With different periodicity,
it dumps (i) a snapshot of the union of all the Adj-RIB-out tables
(RIB dump) and (ii) the update messages received within that
period from all the VPs (Updates dump).

an open-source implementation of the BGP Monitoring
Protocol defined in an IETF draft [41] and supported by
latest versions of JunOS and Cisco IOS. The protocol
allows a user to periodically access the Adj-RIBs-In of
a router or to monitor its BGP peering sessions. While
OpenBMP can be easily deployed within an AS to mon-
itor its BGP routers, there are currently no projects
which make such data publicly available. Route col-
lectors are often used for this purpose [32, 34, 39]. A
route collector is a host running a collector process
(e.g., Quagga [35]), which emulates a router and es-
tablishes BGP peering sessions with one or more real
routers (vantage points, VPs, in the following). Each
VP sends to the collector update messages (updates)
each time the Adj-RIB-out changes, reflecting changes
to its Loc-RIB (Figure 1).

Normally, a BGP session with a collector is config-
ured as a customer-provider relationship, i.e., as if the
VP was offering transit service to the collector. In this
case, the VP is called full-feed, since it will advertise to
the collector an Adj-RIB-Out which contains the entire
set of routes in its Loc-RIB. This way, the collector po-
tentially knows, at each instant, all the preferred-routes
that the VP will use to reach the rest of the Internet
— a partial view of the Internet topology graph visible
to that router. A partial-feed VP instead, will provide
through its Adj-RIB-Out only a subset of the routes in
its Loc-RIB, e.g., routes to its own networks, or learned
through its customers. Unfortunately, projects pub-
licly providing information acquired by their collectors
do not label VPs as full- or partial-feed, since peering
with a collector is usually established on a voluntary
basis and VP behavior can be subject to change with-
out notice. Therefore, the policy that determines the
Adj-RIB-Out to be shared with the collector must be
dynamically inferred from the data (e.g., size of the Adj-
RIB-Out).

For each VP, the collector maintains a session state
and an image of the Adj-RIB-out table derived from
updates. The collector periodically dumps, with a fre-

quency of respectively few hours and few minutes, (i)
a snapshot of the union of the maintained Adj-RIB-out
tables (RIB dump) and (ii) the update messages re-
ceived from all its VPs since the last dump, along with
state changes (Updates dump).

The most popular projects operating route collectors
and making their dumps available in public archives
are RouteViews [32] and RIPE RIS [39]. They cur-
rently operate 18 and 13 collectors respectively, which
in total peer with approximately 380 and 600 VPs dis-
tributed worldwide (this number increases every year).
Analyzing data from multiple VPs is of fundamental
importance for most Internet studies, since each router
has a limited view of the Internet topology and, even
when full-feed, a VP shares only part of this information
(the preferred routes). Moreover, macroscopic Internet
phenomena visible through the routing infrastructure
(e.g., outages, cyber attacks, peering relationships, per-
formance issues, route leaks, router bugs) affect Internet
routers differently, as a function of geography, topology,
router operating system and hardware characteristics,
operator, etc.. RIB dumps provide an efficient sum-
mary of changes to BGP routing tables with a coarse
time granularity that is sufficient for several classes of
studies [20,26–28]. In contrast, Updates dumps carry a
lot of information to be processed, but offer a complete
view of the observable routing dynamics, enabling other
types of analysis and near-realtime monitoring applica-
tions [21,22,30,44].

Such a distributed and detailed — even if partial –
view of the inter-domain routing plane, generates large
amounts of data. RouteViews and RIPE RIS collectors
save a RIB dump every 2 and 8 hours and an Updates
dump every 15 and 5 minutes, respectively. In 2015
an Adj-RIB-Out from a full-feed peer contains approx-
imately 550k routes (each route includes an AS path
toward a different network prefix) and on average gener-
ates about 1.5K updates every 5 minutes. Both projects
save RIB and Updates dumps in a binary format, stan-
dardized by the IETF, called the Multi-Threaded Rout-
ing Toolkit (MRT) routing information export format
[6]. The size of compressed dump files is currently be-
tween 10KB and 100MB for RIB dumps and between
1KB and 10MB for Updates dumps. RouteViews and
RIPE RIS archives date back to 2001 and 1999 respec-
tively, enabling longitudinal studies relevant to under-
stand the evolution of the Internet infrastructure and its
impact in other fields. The full archives of compressed
files are about 8.9TB and 3.7TB, currently growing at
the rate of 2TB per year.

The most widely adopted software for BGP data anal-
ysis in the research community [2, 4, 8, 23, 37, 40, 43] is
libBGPdump [38], an open source C library that pro-
vides a simple API to parse BGP dumps in MRT format
and deserializes MRT records into custom data struc-

2

BGP

BGP

BGP

BGP

FOR COLLECTED DATA
overview

20

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•RouteViews and RIPE RIS collectors (~31) save:
•RIB dumps every 2 and 8 hours
•Updates dumps every 15 and 5 minutes

•a full-feed VP (in 2015)
•has a an Adj-RIB-Out with ~550k routes
•generates ~1.5K updates every 5 minutes

•RIB and Updates dumps are saved in the Multi-Threaded Routing Toolkit (MRT)
binary format [RFC6396]

•10KB -100MB for RIB dumps (compressed)
•1KB -10MB for Updates dumps (compressed)

•RouteViews and RIPE RIS archives date back to 2001 and 1999 respectively
•The full archives of compressed files are about 8.9TB and 3.7TB, currently growing
at the rate of 2TB per year

LIBBGPSTREAM API
BGP data stream

21

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•BGP data stream: <collector projects (e.g., Route Views, RIPE RIS), list of
collectors, dump types (RIB/Updates), time interval start and either time
interval end or live mode>.

•A stream can include dumps of different type and from different
collector projects.
•A stream is made of BGP records, which can be decomposed in BGP
elems

LIBBGPSTREAM PULL MODEL
based on the Broker

22

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•the library implements a “client pull” model
- efficient data retrieval without potential input buffer overflow (i.e., data is only
retrieved when the user is ready to process it)
- supports live mode

•iteratively alternates between:
- meta-data queries to the Broker
- and opening and processing the returned data 

•historical mode: the stream ends when the Broker returns an empty set
•live mode: the query mechanism is blocking. If the Broker has no data
available, a polling cycle will begin, periodically re-issuing the request to the
Broker

C API
specifying a stream

23

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.

Listing 1 shows sample code that uses the BGPStream
API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).

Listing 1 can be converted into a live monitoring pro-
cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.

To implement this model, the system iteratively alter-
nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or

6

LIBBGPSTREAM API
BGP record

24

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•A BGP record encapsulate an
MRT record

•Dumps are composed of multiple
MRT records, whose type is
specified in their header

-an update message is stored in a
single MRT record, but multiple
update messages can be in the same
MRT record (see next slide)

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$
%%&%% %%&'(%%&)%%%&%(%%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].
To reduce the computational cost of sorting records,

we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7

LIBBGPSTREAM API
BGP elem

25

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•An MRT record may group
elements of the same type but
related to different VPs or prefixes

- e.g., routes to the same prefix from
different VPs (in a RIB dump record)
- e.g., announcements from the same VP to
multiple prefixes, but sharing a common
path (in a Updates dump record)

•libBGPStream decomposes a
record into a set of individual
elements (BGPStream elems)

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$
%%&%% %%&'(%%&)%%%&%(%%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].

To reduce the computational cost of sorting records,
we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7

C API
while loop

26

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.

Listing 1 shows sample code that uses the BGPStream
API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).

Listing 1 can be converted into a live monitoring pro-
cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.

To implement this model, the system iteratively alter-
nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or

6

27

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

• When:
• when reading dumps from more than one collector (inter-collector

sorting)
• when a stream is configured to include both RIB and Updates

dumps (intra-collector sorting)

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record

!"#$
%%&%% %%&'(%%&)%%%&%(%%&'% %%&*% %%&*(

!!"#$

!%&

'()*+,-

!./-

'()*+,-

!./- 01(2+342,2,35$#3!6,-7

82+(2+3-+9,*:

8;,96*((01<3-,+3$35=3!6,-7 8;,96*((01<3-,+3&35>3!6,-7

Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].

To reduce the computational cost of sorting records,
we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.

7

RECORD-LEVEL SORTING
When

28

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

LIBBGPSTREAM
C API

PYBGPSTREAM
C Python bindings

Efficiency

Ea
se

 o
f u

se

BGPCORSARO
tool + plugins

BGPREADER
command line tool

TOOLS/APIS
continued..

PYBGPSTREAM
Example: studying AS path inflation

29

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

How many AS paths are longer than the shortest path between two ASes due
to routing policies? (directly correlates to the increase in BGP convergence time)

30 LINES OF
PYTHON CODE

BGPCORSARO
Example: monitor your own address space on BGP

30

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Time (UTC)

Origin ASes [y2]# Prefixes [y1]

26. Jan5. Jan 12. Jan 19. Jan
0

20

40

60

80

100

0

1

2

#
 p

re
fi
x
e

s

#
 o

rig
in

 A
S

e
s

Figure 6: Monitoring of GARR (AS195) IP space using
the pfxmonitor plugin. The green line reports the number of
unique prefixes announced over time, the blue line reports the
number of unique origin ASes that are currently announcing such
prefixes. The spikes of the origin AS timeseries identify four hi-
jack events in which AS 198596 announces part of the IP space
belonging to AS195.

Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end
of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis of
historical or live data streams. In Section 7, we describe
a deployment of BGPCorsaro that runs 24/7 as a part
of our global Internet monitoring infrastructure.

As a sample plugin, we describe a stateful plugin that
monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.

We used this plugin to process data from all avail-
able Route Views and RIPE RIS collectors, for January
2015, setting the time bin size to 5 minutes, and pro-
viding as input to the plugin the IP ranges covered by
the 78 prefixes originated by AS137 (GARR, the Ital-

ian Academic and Research Network) as observed on
January 1st, 2015. Figure 6, shows a graphical repre-
sentation of the two time-series generated by the plugin:
the number of unique announced prefixes (in green) and
number of unique origin ASNs (in blue). While a small
oscillation of the number of prefixes announced is ex-
pected (as prefixes can be announced as aggregated or
de-aggregated), in 4 cases the number of unique an-
nouncing ASes shifts from 1 to 2, for about 1 hour.
Through manual analysis, we found that, during these
spikes, a portion of GARR’s IP space (specifically, 7
/24 prefixes) was also announced by TehnoGrup (AS
198596), a Romanian AS that appears to have no re-
lationship with GARR. The event on January 7th is
reported as an hijack attack by Dyn Research [29], and
given the similar nature of the other three events visible
in the graph (1st, 7th and 8th of January), the plugin
output suggests that three additional attacks occurred.
Although this approach cannot detect all types of hi-
jacking attacks, it is still a valid method to identify
suspicious events and serves to demonstrate the capa-
bilities of BGPCorsaro.

7. MONITORING THE GLOBAL INTERNET

In this section, we describe how we use BGPStream to
develop and deploy our global BGP monitoring infras-
tructure supporting research into macroscopic Internet
events. The purpose of this section is (i) to highlight
how BGPStream enables the development of a complex
monitoring system with stringent requirements, and (ii)
to exemplify how additional challenges that arise in such
complex BGP monitoring tasks — and which we do not
address by-design in BGPStream – can be solved.

In the IODA research project [13], we constantly mon-
itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [11] [12]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.

Another class of events that we are interested in de-
tecting and analyzing is BGP-based traffic hijacking
[10]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed

9

The “prefix-monitor” plugin
(distributed with source) 
monitors a set of IP ranges as
they are seen from BGP monitors
distributed worldwide:
- how many prefixes reachable
- how many origin ASes
- generates detailed logs

Hijacking of AS137 (GARR) - Jan 2015*

*Originally discovered by Dyn: 
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/ 

GLOBAL MONITORING
IODA, HIJACKS, etc.

31

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•need to maintain a live global view (i.e., for each and every VP) of BGP
reachability information updated with fine time granularity (e.g., few
minutes)

•We implement 3 mechanisms:
1. A solution to accurately reconstruct the observable LocRIB of each VP
2. A synchronization mechanism
3. Analysis modules to manipulate data from a BGP view

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

#
 p

re
fix

e
s #

 p
re

fixe
s

Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete com-
plete rather than expired.

The BGPViewServer is a potential bottleneck in our
distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.

In Figure 10, we show the output of the per-country
and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15, 18].

Similarly, we developed consumers that continuously
analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.

As mentioned (Section 2), BGPStream development
is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/

12

norhijac
S

D A

S D dest A norm

32

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Figure 7: BGPStream framework deployment for live
monitoring. For each collector, we run an instance of BGP-
Corsaro with the routing-tables plugin, which maintains, in a
hash table, the observable LocRIB of all the VPs of the collector.
At the end of each time bin (e.g., 1 minute) each BGPCorsaro
pushes its hash table to the BGPViewServer that, in turn, ag-
gregates hash tables with the same timestamp into partial BGP
views and publishes them once they become complete. Such data
can be further processed by the BGPViewConsumers, which han-
dle the results of their computation to a Time Series Monitoring
system.

view can be useful in many other applicative scenarios,
such as tracking AS paths containing a particular AS,
verifying the occurrence of a route leak, spotting new
(suspicious) AS links appearing in the AS-graph, etc.

We implement our live monitoring system using the
distributed architecture sketched in Figure 7. On top
of BGPStream and BGPCorsaro, we implement three
mechanisms:

• A solution to efficiently and accurately reconstruct
the observable LocRIB of each VP (as discussed in
Section 2, the LocRIB is fully observable only from
full-feed peers; for simplicity, in this section we will
refer to the observable LocRIB generically as the
routing table of the VP): we developed a BGPCor-
saro plugin, called routing-tables, that performs
this operation at regular intervals of 1 minute (Sec-
tion 7.1). We run one BGPCorsaro instance per
collector in order to distribute the computation
across multiple CPU-cores and/or hosts (the cur-
rent prototype system runs on 2 machines, each
with 12 CPU cores). Each BGPCorsaro instance
pushes data to a system called BGPViewServer
via a message queue.

• A synchronization mechanism that — in live mode
– aligns data published with variable timing by
multiple collectors: through a synchronization buffer,
the BGPViewServer merges into BGP views the
output from BGPCorsaro instances as it becomes
available and publishes on average one BGP view
every minute (Section 7.2).

TIMESTAMP

REACH-ATTR

main cell

A/W

TIMESTAMP

REACH-ATTR

Shadow cell

VP

Prefix

Figure 8: A cell of the multi-dimensional hash table used
by the routing-table BGPCorsaro plugin to maintain the
state of a prefix for a VP. The cell carries the prefix reachabil-
ity attributes as observed by a VP and is updated by announce-
ments, withdrawals, and RIB dump records.

• Analysis modules that implement data manipula-
tion routines (e.g., for event detection or extrac-
tion of statistics to output as time series) on a BGP
view, which we call BGPViewConsumers (Section
7.3). The communication between the BGPViewServer
and the consumers follows a publish-subscribe model.

7.1 Reconstructing VPs routing tables

Since RIB dumps are currently dumped every 2 or 8
hours by Route Views and RIPE RIS, the routing-tables
plugin uses a RIB dump as a starting reference and then
relies on the Update dumps to reconstruct the evolution
of the routing table, using subsequent RIB dumps for
sanity checking and correction.

We save state and routing table information in a data
structure organized as a multi-dimensional hash table,
which provides insertion and lookup with average time
complexity of O(1) and exploits the data redundancy
of BGP routing tables from multiple VPs to reduce its
memory footprint. At a high level, this structure is
a matrix with prefixes and VPs as row and column
indexes, respectively. Each cell in the matrix (Fig-
ure 8) contains the reachability-attributes for the
prefix (e.g, the AS path), the timestamp of when the
cell was last modified by an Update dump record, a
A/W flag that indicates whether such operation was
an announcement or a withdrawal, and a shadow cell,
a similar structure except for the absence of the A/W
flag.

The shadow cell is used to store data from a new
RIB dump record before it is applied: we apply all the
records from a RIB dump only if none of them is marked
as corrupted by BGPStream. A RIB dump is uniquely
identified by the BGPStream record fields <project, col-
lector, type, dump time>, and the plugin recognizes its
last record through the position field. Each time the last
record of a (not corrupted) RIB dump is received, the
information in the shadow cells in the columns (VPs)
associated with the corresponding collector is compared
to their respective main cells and merged: if the time-
stamp in the shadow cell is more recent, then its data
is copied in the main cell (and the A/W flag is set to

10

1

2

3

GLOBAL MONITORING
IODA, HIJACKS, etc.

BGPVIEWSERVER
buffering partial/complete BGP views

33

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•At the end of a 1-minute time bin, each
BGPCorsaro instance pushes data (the
reconstructed routing table) to the
BGPViewServer  

•Such data is merged into a partial BGP
view corresponding to its time bin  

•A BGP view is considered complete
when all the BGPCorsaro instances have
contributed to it

Figure 7: BGPStream framework deployment for live
monitoring. For each collector, we run an instance of BGP-
Corsaro with the routing-tables plugin, which maintains, in a
hash table, the observable LocRIB of all the VPs of the collector.
At the end of each time bin (e.g., 1 minute) each BGPCorsaro
pushes its hash table to the BGPViewServer that, in turn, ag-
gregates hash tables with the same timestamp into partial BGP
views and publishes them once they become complete. Such data
can be further processed by the BGPViewConsumers, which han-
dle the results of their computation to a Time Series Monitoring
system.

view can be useful in many other applicative scenarios,
such as tracking AS paths containing a particular AS,
verifying the occurrence of a route leak, spotting new
(suspicious) AS links appearing in the AS-graph, etc.

We implement our live monitoring system using the
distributed architecture sketched in Figure 7. On top
of BGPStream and BGPCorsaro, we implement three
mechanisms:

• A solution to efficiently and accurately reconstruct
the observable LocRIB of each VP (as discussed in
Section 2, the LocRIB is fully observable only from
full-feed peers; for simplicity, in this section we will
refer to the observable LocRIB generically as the
routing table of the VP): we developed a BGPCor-
saro plugin, called routing-tables, that performs
this operation at regular intervals of 1 minute (Sec-
tion 7.1). We run one BGPCorsaro instance per
collector in order to distribute the computation
across multiple CPU-cores and/or hosts (the cur-
rent prototype system runs on 2 machines, each
with 12 CPU cores). Each BGPCorsaro instance
pushes data to a system called BGPViewServer
via a message queue.

• A synchronization mechanism that — in live mode
– aligns data published with variable timing by
multiple collectors: through a synchronization buffer,
the BGPViewServer merges into BGP views the
output from BGPCorsaro instances as it becomes
available and publishes on average one BGP view
every minute (Section 7.2).

TIMESTAMP

REACH-ATTR

main cell

A/W

TIMESTAMP

REACH-ATTR

Shadow cell

VP

Prefix

Figure 8: A cell of the multi-dimensional hash table used
by the routing-table BGPCorsaro plugin to maintain the
state of a prefix for a VP. The cell carries the prefix reachabil-
ity attributes as observed by a VP and is updated by announce-
ments, withdrawals, and RIB dump records.

• Analysis modules that implement data manipula-
tion routines (e.g., for event detection or extrac-
tion of statistics to output as time series) on a BGP
view, which we call BGPViewConsumers (Section
7.3). The communication between the BGPViewServer
and the consumers follows a publish-subscribe model.

7.1 Reconstructing VPs routing tables

Since RIB dumps are currently dumped every 2 or 8
hours by Route Views and RIPE RIS, the routing-tables
plugin uses a RIB dump as a starting reference and then
relies on the Update dumps to reconstruct the evolution
of the routing table, using subsequent RIB dumps for
sanity checking and correction.

We save state and routing table information in a data
structure organized as a multi-dimensional hash table,
which provides insertion and lookup with average time
complexity of O(1) and exploits the data redundancy
of BGP routing tables from multiple VPs to reduce its
memory footprint. At a high level, this structure is
a matrix with prefixes and VPs as row and column
indexes, respectively. Each cell in the matrix (Fig-
ure 8) contains the reachability-attributes for the
prefix (e.g, the AS path), the timestamp of when the
cell was last modified by an Update dump record, a
A/W flag that indicates whether such operation was
an announcement or a withdrawal, and a shadow cell,
a similar structure except for the absence of the A/W
flag.

The shadow cell is used to store data from a new
RIB dump record before it is applied: we apply all the
records from a RIB dump only if none of them is marked
as corrupted by BGPStream. A RIB dump is uniquely
identified by the BGPStream record fields <project, col-
lector, type, dump time>, and the plugin recognizes its
last record through the position field. Each time the last
record of a (not corrupted) RIB dump is received, the
information in the shadow cells in the columns (VPs)
associated with the corresponding collector is compared
to their respective main cells and merged: if the time-
stamp in the shadow cell is more recent, then its data
is copied in the main cell (and the A/W flag is set to

10

BGPVIEWSERVER
sliding window

34

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•we buffer partial BGP views in a sliding
window based on their time bins  

•the window slides each time data from
a new bin arrives  

•we publish a BGP view either
-when all the BGPCorsaro instances have
contributed to it (complete view)
-or when it expires, i.e., its time bin is no
longer covered by the window (partial view) Figure 7: BGPStream framework deployment for live

monitoring. For each collector, we run an instance of BGP-
Corsaro with the routing-tables plugin, which maintains, in a
hash table, the observable LocRIB of all the VPs of the collector.
At the end of each time bin (e.g., 1 minute) each BGPCorsaro
pushes its hash table to the BGPViewServer that, in turn, ag-
gregates hash tables with the same timestamp into partial BGP
views and publishes them once they become complete. Such data
can be further processed by the BGPViewConsumers, which han-
dle the results of their computation to a Time Series Monitoring
system.

view can be useful in many other applicative scenarios,
such as tracking AS paths containing a particular AS,
verifying the occurrence of a route leak, spotting new
(suspicious) AS links appearing in the AS-graph, etc.

We implement our live monitoring system using the
distributed architecture sketched in Figure 7. On top
of BGPStream and BGPCorsaro, we implement three
mechanisms:

• A solution to efficiently and accurately reconstruct
the observable LocRIB of each VP (as discussed in
Section 2, the LocRIB is fully observable only from
full-feed peers; for simplicity, in this section we will
refer to the observable LocRIB generically as the
routing table of the VP): we developed a BGPCor-
saro plugin, called routing-tables, that performs
this operation at regular intervals of 1 minute (Sec-
tion 7.1). We run one BGPCorsaro instance per
collector in order to distribute the computation
across multiple CPU-cores and/or hosts (the cur-
rent prototype system runs on 2 machines, each
with 12 CPU cores). Each BGPCorsaro instance
pushes data to a system called BGPViewServer
via a message queue.

• A synchronization mechanism that — in live mode
– aligns data published with variable timing by
multiple collectors: through a synchronization buffer,
the BGPViewServer merges into BGP views the
output from BGPCorsaro instances as it becomes
available and publishes on average one BGP view
every minute (Section 7.2).

TIMESTAMP

REACH-ATTR

main cell

A/W

TIMESTAMP

REACH-ATTR

Shadow cell

VP

Prefix

Figure 8: A cell of the multi-dimensional hash table used
by the routing-table BGPCorsaro plugin to maintain the
state of a prefix for a VP. The cell carries the prefix reachabil-
ity attributes as observed by a VP and is updated by announce-
ments, withdrawals, and RIB dump records.

• Analysis modules that implement data manipula-
tion routines (e.g., for event detection or extrac-
tion of statistics to output as time series) on a BGP
view, which we call BGPViewConsumers (Section
7.3). The communication between the BGPViewServer
and the consumers follows a publish-subscribe model.

7.1 Reconstructing VPs routing tables

Since RIB dumps are currently dumped every 2 or 8
hours by Route Views and RIPE RIS, the routing-tables
plugin uses a RIB dump as a starting reference and then
relies on the Update dumps to reconstruct the evolution
of the routing table, using subsequent RIB dumps for
sanity checking and correction.

We save state and routing table information in a data
structure organized as a multi-dimensional hash table,
which provides insertion and lookup with average time
complexity of O(1) and exploits the data redundancy
of BGP routing tables from multiple VPs to reduce its
memory footprint. At a high level, this structure is
a matrix with prefixes and VPs as row and column
indexes, respectively. Each cell in the matrix (Fig-
ure 8) contains the reachability-attributes for the
prefix (e.g, the AS path), the timestamp of when the
cell was last modified by an Update dump record, a
A/W flag that indicates whether such operation was
an announcement or a withdrawal, and a shadow cell,
a similar structure except for the absence of the A/W
flag.

The shadow cell is used to store data from a new
RIB dump record before it is applied: we apply all the
records from a RIB dump only if none of them is marked
as corrupted by BGPStream. A RIB dump is uniquely
identified by the BGPStream record fields <project, col-
lector, type, dump time>, and the plugin recognizes its
last record through the position field. Each time the last
record of a (not corrupted) RIB dump is received, the
information in the shadow cells in the columns (VPs)
associated with the corresponding collector is compared
to their respective main cells and merged: if the time-
stamp in the shadow cell is more recent, then its data
is copied in the main cell (and the A/W flag is set to

10

BGPVIEWSERVER
dimensioning

35

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•We dimension the length of the
sliding window empirically (12 months
observation of RV+RIS)

•the latency at which data providers
publish dumps
•the memory footprint

•when processing data from all
Route Views and RIPE RIS collectors,
a 30 minute sliding-window buffer
requires ≈60GB of memory and
causes 99% of BGP views to be
published because they are complete
rather than expired

Figure 7: BGPStream framework deployment for live
monitoring. For each collector, we run an instance of BGP-
Corsaro with the routing-tables plugin, which maintains, in a
hash table, the observable LocRIB of all the VPs of the collector.
At the end of each time bin (e.g., 1 minute) each BGPCorsaro
pushes its hash table to the BGPViewServer that, in turn, ag-
gregates hash tables with the same timestamp into partial BGP
views and publishes them once they become complete. Such data
can be further processed by the BGPViewConsumers, which han-
dle the results of their computation to a Time Series Monitoring
system.

view can be useful in many other applicative scenarios,
such as tracking AS paths containing a particular AS,
verifying the occurrence of a route leak, spotting new
(suspicious) AS links appearing in the AS-graph, etc.

We implement our live monitoring system using the
distributed architecture sketched in Figure 7. On top
of BGPStream and BGPCorsaro, we implement three
mechanisms:

• A solution to efficiently and accurately reconstruct
the observable LocRIB of each VP (as discussed in
Section 2, the LocRIB is fully observable only from
full-feed peers; for simplicity, in this section we will
refer to the observable LocRIB generically as the
routing table of the VP): we developed a BGPCor-
saro plugin, called routing-tables, that performs
this operation at regular intervals of 1 minute (Sec-
tion 7.1). We run one BGPCorsaro instance per
collector in order to distribute the computation
across multiple CPU-cores and/or hosts (the cur-
rent prototype system runs on 2 machines, each
with 12 CPU cores). Each BGPCorsaro instance
pushes data to a system called BGPViewServer
via a message queue.

• A synchronization mechanism that — in live mode
– aligns data published with variable timing by
multiple collectors: through a synchronization buffer,
the BGPViewServer merges into BGP views the
output from BGPCorsaro instances as it becomes
available and publishes on average one BGP view
every minute (Section 7.2).

TIMESTAMP

REACH-ATTR

main cell

A/W

TIMESTAMP

REACH-ATTR

Shadow cell

VP

Prefix

Figure 8: A cell of the multi-dimensional hash table used
by the routing-table BGPCorsaro plugin to maintain the
state of a prefix for a VP. The cell carries the prefix reachabil-
ity attributes as observed by a VP and is updated by announce-
ments, withdrawals, and RIB dump records.

• Analysis modules that implement data manipula-
tion routines (e.g., for event detection or extrac-
tion of statistics to output as time series) on a BGP
view, which we call BGPViewConsumers (Section
7.3). The communication between the BGPViewServer
and the consumers follows a publish-subscribe model.

7.1 Reconstructing VPs routing tables

Since RIB dumps are currently dumped every 2 or 8
hours by Route Views and RIPE RIS, the routing-tables
plugin uses a RIB dump as a starting reference and then
relies on the Update dumps to reconstruct the evolution
of the routing table, using subsequent RIB dumps for
sanity checking and correction.

We save state and routing table information in a data
structure organized as a multi-dimensional hash table,
which provides insertion and lookup with average time
complexity of O(1) and exploits the data redundancy
of BGP routing tables from multiple VPs to reduce its
memory footprint. At a high level, this structure is
a matrix with prefixes and VPs as row and column
indexes, respectively. Each cell in the matrix (Fig-
ure 8) contains the reachability-attributes for the
prefix (e.g, the AS path), the timestamp of when the
cell was last modified by an Update dump record, a
A/W flag that indicates whether such operation was
an announcement or a withdrawal, and a shadow cell,
a similar structure except for the absence of the A/W
flag.

The shadow cell is used to store data from a new
RIB dump record before it is applied: we apply all the
records from a RIB dump only if none of them is marked
as corrupted by BGPStream. A RIB dump is uniquely
identified by the BGPStream record fields <project, col-
lector, type, dump time>, and the plugin recognizes its
last record through the position field. Each time the last
record of a (not corrupted) RIB dump is received, the
information in the shadow cells in the columns (VPs)
associated with the corresponding collector is compared
to their respective main cells and merged: if the time-
stamp in the shadow cell is more recent, then its data
is copied in the main cell (and the A/W flag is set to

10

BGPVIEWSERVER
bottleneck?

36

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

•The BGPViewServer is a potential
bottleneck

• # collectors grows —> increase in
the amount of data that the server
must receive, process and publish
every minute
•we architected the server to process
each time bin independently of others
• multiple server instances can be run
(e.g., on separate hosts), with
BGPCorsaro processes distributing
data amongst them in a round-robin
fashion.

Figure 7: BGPStream framework deployment for live
monitoring. For each collector, we run an instance of BGP-
Corsaro with the routing-tables plugin, which maintains, in a
hash table, the observable LocRIB of all the VPs of the collector.
At the end of each time bin (e.g., 1 minute) each BGPCorsaro
pushes its hash table to the BGPViewServer that, in turn, ag-
gregates hash tables with the same timestamp into partial BGP
views and publishes them once they become complete. Such data
can be further processed by the BGPViewConsumers, which han-
dle the results of their computation to a Time Series Monitoring
system.

view can be useful in many other applicative scenarios,
such as tracking AS paths containing a particular AS,
verifying the occurrence of a route leak, spotting new
(suspicious) AS links appearing in the AS-graph, etc.

We implement our live monitoring system using the
distributed architecture sketched in Figure 7. On top
of BGPStream and BGPCorsaro, we implement three
mechanisms:

• A solution to efficiently and accurately reconstruct
the observable LocRIB of each VP (as discussed in
Section 2, the LocRIB is fully observable only from
full-feed peers; for simplicity, in this section we will
refer to the observable LocRIB generically as the
routing table of the VP): we developed a BGPCor-
saro plugin, called routing-tables, that performs
this operation at regular intervals of 1 minute (Sec-
tion 7.1). We run one BGPCorsaro instance per
collector in order to distribute the computation
across multiple CPU-cores and/or hosts (the cur-
rent prototype system runs on 2 machines, each
with 12 CPU cores). Each BGPCorsaro instance
pushes data to a system called BGPViewServer
via a message queue.

• A synchronization mechanism that — in live mode
– aligns data published with variable timing by
multiple collectors: through a synchronization buffer,
the BGPViewServer merges into BGP views the
output from BGPCorsaro instances as it becomes
available and publishes on average one BGP view
every minute (Section 7.2).

TIMESTAMP

REACH-ATTR

main cell

A/W

TIMESTAMP

REACH-ATTR

Shadow cell

VP

Prefix

Figure 8: A cell of the multi-dimensional hash table used
by the routing-table BGPCorsaro plugin to maintain the
state of a prefix for a VP. The cell carries the prefix reachabil-
ity attributes as observed by a VP and is updated by announce-
ments, withdrawals, and RIB dump records.

• Analysis modules that implement data manipula-
tion routines (e.g., for event detection or extrac-
tion of statistics to output as time series) on a BGP
view, which we call BGPViewConsumers (Section
7.3). The communication between the BGPViewServer
and the consumers follows a publish-subscribe model.

7.1 Reconstructing VPs routing tables

Since RIB dumps are currently dumped every 2 or 8
hours by Route Views and RIPE RIS, the routing-tables
plugin uses a RIB dump as a starting reference and then
relies on the Update dumps to reconstruct the evolution
of the routing table, using subsequent RIB dumps for
sanity checking and correction.

We save state and routing table information in a data
structure organized as a multi-dimensional hash table,
which provides insertion and lookup with average time
complexity of O(1) and exploits the data redundancy
of BGP routing tables from multiple VPs to reduce its
memory footprint. At a high level, this structure is
a matrix with prefixes and VPs as row and column
indexes, respectively. Each cell in the matrix (Fig-
ure 8) contains the reachability-attributes for the
prefix (e.g, the AS path), the timestamp of when the
cell was last modified by an Update dump record, a
A/W flag that indicates whether such operation was
an announcement or a withdrawal, and a shadow cell,
a similar structure except for the absence of the A/W
flag.

The shadow cell is used to store data from a new
RIB dump record before it is applied: we apply all the
records from a RIB dump only if none of them is marked
as corrupted by BGPStream. A RIB dump is uniquely
identified by the BGPStream record fields <project, col-
lector, type, dump time>, and the plugin recognizes its
last record through the position field. Each time the last
record of a (not corrupted) RIB dump is received, the
information in the shadow cells in the columns (VPs)
associated with the corresponding collector is compared
to their respective main cells and merged: if the time-
stamp in the shadow cell is more recent, then its data
is copied in the main cell (and the A/W flag is set to

10

demo on the browser

37
w w w .caida.org

37

BGPVIEW CONSUMERS

BGP HACKATHON - FEB 2016
theme: “live BGP measurements & monitoring”

38

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

Generation
Collection

Injection

Processing
& Analysis

Data-plane active measurements

Improve/Integrate tools to study the BGP eco-system. Target practical problems:
topology, hijacks, outages, RPKI deployment, path inflation, circuitous paths, policies,
relationships, visualize dynamics, …

39

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

We will provide a rich toolbox and “live” data access:

Generation
Collection

Injection

Processing
& Analysis

Data-plane active measurements

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

#
 p

re
fix

e
s #

 p
re

fixe
s

Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete com-
plete rather than expired.

The BGPViewServer is a potential bottleneck in our
distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.

In Figure 10, we show the output of the per-country
and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15, 18].

Similarly, we developed consumers that continuously
analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.

As mentioned (Section 2), BGPStream development
is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/

12

PEERING

RIPE Atlas CAIDA Ark Looking Glasses

VIZ tools

CAIDA AS Rank

BGP HACKATHON - FEB 2016
theme: “live BGP measurements & monitoring”

BGP HACKATHON
http://github.com/CAIDA/bgp-hackathon/wiki

40
w w w .caida.org

•6-7 February 2016 (weekend before NANOG 66)
•San Diego Supercomputer Center, UC San Diego
•Theme: live BGP measurements and monitoring
•Toolbox: BGPMon, RIPE RIS, PEERING, BGPStream, RIPE Atlas,  

 CAIDA Archipelago, Route Views, looking glasses,  
 AS relationships, AS Rank, Visualization tools, …  

•How to contribute:
•join us and come over to hack!
•help teams as a domain expert
•propose projects that hacking teams may pick
•offer to join the jury that will assign awards

 >>> bgp-hackathon-info@caida.org <<<
Center for Applied Internet Data Analysis 
University of California San Diego

THANKS

41

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

bgpstream.caida.org
github.com/CAIDA/bgp-hackathon/wiki

