

IPv6 AS Relationships, Cliques, and Congruence

Vasileios Giotsas, Matthew Luckie, Bradley Huffaker, kc claffy vgiotsas@caida.org UCSD/CAIDA

Passive and Active Measurement (PAM) Conference 2015, New York City, NY, March 19-20, 2015

Business relationships determine the economics of routing

• customer-to-provider (c2p):

 $_{\odot}$ An AS buys transit access to the routing table of a better-connected AS

• peer-to-peer (p2p):

 $\circ\, \text{peers}$ provide mutual access to subset of each others routing table

• Tier-1 clique:

 \circ A set of of ASes that access the entire routing table through non-provider links

• Tier-I ASes need to peer with each other to achieve global reachability

IPv6 AS relationship inference (more) challenging

- \bullet Low deployment and traffic mean different economics than IPv4
- IPv6 business policies are less rigorously enforced, leading to more policy violations
- IPv6 graph is not fully connected due to peering disputes between large transit-free providers

IPv6 AS relationship inference (more) challenging

- \bullet Low deployment and traffic mean different economics than IPv4
- IPv6 business policies are less rigorously enforced, leading to more policy violations
- IPv6 graph is not fully connected due to peering disputes between large transit-free providers

Limited academic or commercial efforts for IPv6 relationship inference

Adapting an IPv4 algorithm to IPv6

- Increasing similarity between IPv4 & IPv6 topologies and paths¹:

 The fraction of IPv6 Enterprise Customer ASes converges to IPv4
 Dual-stack paths only 5% identical in 2007 → 50% in 20012
- IPv6 traffic is maturing²

 \circ 13-fold increase in IPv6 traffic between 2010 and 2013 \circ IPv6 traffic mix more similar to IPv6 than in the past

 \odot IPv6 traffic mix more similar to IPv4 than in the past

- 1. Dhamdhere, A., et al.: Measuring the deployment of IPv6: Topology, routing and performance. IMC 2012
- 2. Czyz, J., et al.: Measuring IPv6 adoption. SIGCOMM 2014

Abbreviated IPv4 relationship inference

- I. Sanitize input BGP paths (remove loops, reserved ASNs, IXPs)
- 2. Rank ASes by transit degree
- 3. Infer clique at the top of the AS topology
- 4. Remove path poisoning
- 5. Infer c2p relationships

neighbour passes route to a provider
neighbour is in clique and passes route to another clique AS
Infer c2p relationships between stub and clique Ases

6. Infer all other links as p2p

Abbreviated IPv4 relationship inference

- I. Sanitize input BGP paths (remove loops, reserved ASNs, IXPs)
- 2. Rank ASes by transit degree
- 3. Infer clique at the top of the AS topology
- 4. Remove path poisoning
- 5. Infer c2p relationships

neighbour passes route to a provider
neighbour is in clique and passes route to another clique AS

 \odot Infer c2p relationships between stub and clique Ases

6. Infer all other links as p2p

IPv4 tier-1 clique inference

• Sort ASes by transit degree (TD):

• Apply Bron-Kerbosch algorithm to find maximal clique starting from the 10 largest ASes (SEED) in terms of transit degree

Problems with IPv6 clique inference

- IPv4 ASes with the largest TD have restrictive peering policies
 - → form cliques *only* with other large ASes

BUT

In IPv6 ASes with the largest TD have open peering policies, form large peering meshes ASes of varying sizes, often not transit-free
 Seed ASes may have partial IPv6 reachability due to peering disputes
 IPv6 topology is more dynamic, making transit degree a volatile metric

IPv6-specific seed requirements

• Seed ASes should not have open peering policy:

 \odot Avoid ASes that aggressively establish peering meshes

• Seed ASes should have \geq 90% reachability degree:

 \odot Fraction of the BGP-visible IPv6 address space that an AS announces \odot Avoid partitioned ASes

• Number of seed ASes should reflect the topology size:

Size of IPv6 topology significantly smaller than IPv4
 Reduce seed size to be proportional to the topology size

IPv4 relationship inference algorithm

- I. Sanitize input BGP paths (remove loops, reserved ASNs, IXPs)
- 2. Rank ASes by transit degree
- 3. Infer clique at the top of the AS topology
- 4. Remove path poisoning
- 5. Infer c2p relationships

 \circ neighbour passes route to a provider

 \circ neighbour is in clique and passes route to another clique AS

 \odot Infer c2p relationships between stub and clique ASes

6. Infer all other links as p2p

IPv6 relationship inference algorithm

- I. Sanitize input BGP paths (remove loops, reserved ASNs, IXPs)
- 2. Rank ASes by transit degree
- 3. Infer clique at the top of the AS topology
- 4. Remove path poisoning
- 5. Infer c2p relationships
 o neighbour passes route to a provider
 o neighbour is in clique and passes route to another and clique AS
 o Infer c2p relationships between stub and clique ASes
- 6. Infer all other links as p2p

IPv6 clique members can have open peering policy, peer with stub ASes

Three validation datasets

- **BGP Communities** that denote relationship type
- **RPSL** objects that are used to store routing policies in IRRs
- Local Preference values for Hurricane Electric
- Validation data cover ~25% of the visible IPv6 AS links for July 2014

Validation results

- PPV \geq 90% for all three datasets across all the snapshots
- PPV increases along time

Validation results

• For small topology sizes mis-inferences for a single AS can affect the overall PPV, but smoothes out as topology grows

Convergence of IPv4/IPv6 Tier-I cliques

Decreasing relationship disparity

- AS links that appear in both IPv4 and IPv6 topologies are called dual-stack links
- If the relationship type of dualstack links is the same in both IP version we call the *congruent*, otherwise *disparate*

Use customer cones to asses the influence of the influence of the state of the stat **Tier-I** ASes

- Customer cone is the set of ASes that are reached from a given AS following only customer links in the BGP paths we observe
- A's customer cone contains A, plus A's customers, plus its customers' customers, and so on.

Tier-I clique ASes less prominent in IPv6

- Only AS6939 (Hurricane Electric) increased its customer cone size in IPv6
- AS6939 contributes > 50% of disparate dual-stack relationships

Clique ASes increase their market-share in IPv6

3. Luckie, M., et al.: AS Relationships, Customer Cones, and Validation. IMC 2013

Conclusions

- Validated 25% of visible links against three datasets

 Positive Predictive Value consistently above 90% over a decade
- Dual-stack relationships increasingly congruent 0 15% disparity in 2006, to 5% in 2014
- HE is the largest contributor of disparate relationships Largest customer cone in IPv6 topology
- IPv6 transit market small but with trend of growth in contrast to IPv4

http://data.caida.org/datasets/2015-asrank6-data-supplement/data/

Thank you!

Backup slide 2: AS6939 Local Preference Values

Backup slide 3: Evolution of the IPv6 Clique

