Ark Topology Query System

Young Hyun
CAIDA

AIMS 2016 Workshop
Feb 11, 2016
Data Stats

- **8+ years of Ark IPv4 topology data:**
 - 41 billion traces, 18 TB (uncompressed warts files)
 - growing by 766 million traces, 316 GB per month
 - about **9 billion traces per year**

- **2 months of "prefix-probing" data:**
 - probe every announced IPv4 BGP prefix (~609k) daily; independently from 37 monitors
 - growing by 700 million traces per month
 - **8.4 billion traces per year**
Data Stats

Ark Data (IPv4, TB) 2007 Sep 13 to 2016 Feb 10
132 active IPv4 monitors

1 TB

doubled in last 2.6 years
Goals

- improve **data accessibility**
 - easier to find and retrieve data of interest
 - easier to process/analyze data
Goals

- target workflow:
 1. **find** traces with desired properties
 2. **analyze** traces
 3. **visualize** analyses/properties
Goals

- support full access from command line
 - execute all supported queries
 - researchers can write their own analysis/visualization scripts
- support simplified access with web interface
 - **widen audience** with pre-made queries, analyses, and visualizations
 - possible long tail of casual users
Design

- tradeoff: **efficiency vs. everything else** ...
 - ... flexibility/power/expressiveness/generality ...

- guiding principles:
 - focus on **specific use cases**, not maximum generality
 - focus on **responsiveness** for *interactive* data exploration
 - at human time scales: ideally, tens of seconds or less per query
Design

• main focus:
 • querying of topological properties of traceroutes
 • (not performance; e.g., RTT that exceeds a threshold)

• query:
 • all traceroutes that pass through/reach a set of IP addresses, prefixes, ASes, or countries
 • any arbitrary prefix; not necessarily an announced BGP prefix
 • target AS = set of prefixes announced by an AS in BGP
 • target country = set of prefixes that geolocate to a country
Query Model

- **terms:**
 - target $T = \text{address} / \text{prefix} / \text{AS} / \text{country}$
 - target set $S = \{T_1, T_2, T_3, \ldots\}$

- **examples:**
 - $T_1 = 1.1.1.1$
 - $T_2 = 192.168.0.0/16$
 - $T_3 = \text{as3546}$
 - $T_4 = .\text{sy}$
 - $S_1 = 1.1.1.1,192.168.0.0/16,\text{as3546},.\text{sy}$
 - $.\text{sy} = 104.128.128.0/20,104.166.96.0/19,104.167.192.0/18,\ldots$
query: \texttt{addr} -d=n S

- find all traces with at least one hop/destination address that matches \texttt{any} member of the target set \texttt{S}

- \texttt{-d} option constrains matching addresses to be within \texttt{n} hops of start of trace (if \texttt{n} > 0) or end of trace (if \texttt{n} < 0)

- example: \texttt{addr -d 5 10.0.0.0/8,192.168.0.0/16}

query: \texttt{dest} -d=n S

- similar to \texttt{addr} but only matches the destination address
query: **neigh** -d=n S₁ S₂ ...

- find all traces that have at least one matching hop/destination address for each target set Sᵢ
- -d option constrains matched addresses to be within n hops of each other
- example: neigh -d 3 as3546 as701,as702
- example: neigh .il .sy
other query options:

- \texttt{-t} option constrains trace time range
- \texttt{-m} option constrains trace source (monitor/vantage point)
$ pypy ./toq dest -m san-us -q -D .sy

country sy => 87 prefixes: 104.128.128.0/20, 104.166.96.0/19, 104.167.192.0/18, ...

dest 2007-09-13 02:08:40 UTC 2015-05-18 22:56:24 UTC 236833

236,833 matching traces in 725 million san-us traces collected 2007-2015

$ pypy ./toq dest -m san-us -l 1 -D .sy

2014-08-17 19:36:19 UTC (1408304179@0002) from 192.172.226.247
traceroute to 104.128.128.125
 1 192.172.226.252 0.480 ms
 2 192.12.207.65 0.588 ms
 ...
 10 202.43.176.46 196.304 ms
 11 103.10.198.33 201.496 ms
 12 103.10.198.17 202.734 ms

$ pypy ./toq neigh -m san-us -q -D .il .sy

country il => 711 prefixes: 104.130.80.0/20, 104.132.0.0/14, 104.171.112.0/20, ...

country sy => 87 prefixes: 104.128.128.0/20, 104.166.96.0/19, 104.167.192.0/18, ...

Query Traces for RTT Time Series

Plots an RTT time series for target destinations, an RTT histogram, and a time series of target unreachability.

Query

- **Destination address/prefix/AS/country:** as20115
 - Separate multiple targets with commas.
 - Example: 1.2.3.4,10.0.0.0/8,as1234,,sy

- **Start Date:** 2016-01-01 **End Date:** 2016-01-14
 - Dates can be YYYY, YYYY-MM, or YYYY-MM-DD. End date is exclusive.
 - Leave start/end (or both) blank for an open-ended range.

Vantage Point

- nrt-jp
- By Continent
- By Country
- By Org Type

Monitors with IPv6 have an asterisk next to their name.
Future Work

• take advantage of multiple cores
 • some queries can take minutes with single core

• rewrite performance-critical code in C/C++
 • currently, several thousand line Python script

• implement commonly-desired analyses and viz
Future Work

prototype view of traceroute RTTs in CAIDA's Charthouse
Future Work

prototype viz showing differences between a traceroute path and BGP AS paths
Thanks!

www.caida.org/projects/ark

For questions: ark-info@caida.org