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BGP is the central nervous system of the Internet 

BGP’s design is known to contribute to issues in: 

•Availability
-Labovitz et al. “Delayed Internet Routing Convergence”, IEEE/ACM Trans. Netw., 2001.
-Varadhan et al. “Persistent Route Oscillations in Inter-domain Routing”. Computer Networks, 2000.
-Katz-Bassett et al. “LIFEGUARD: Practical Repair of Persistent Route Failures”, SIGCOMM, 2012.

•Performance
-Spring et al. “The Causes of Path Inflation”. SIGCOMM, 2003.

•Security
-Zheng et al. “A Light-Weight Distributed Scheme for Detecting IP Prefix Hijacks in Realtime”. 
SIGCOMM, 2007.

Need to engineer protocol evolution!
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•AS-level topology
-Gregori et al. “On the incompleteness of the AS-level graph: a novel methodology for BGP route 
collector placement”, IMC 2012

•AS relationships
-Giotsas et al. “Inferring Complex AS Relationships”, IMC 2014

•AS interactions: driven by relationships, policies, network conditions,   
   operator updates

-Anwar et al. “Investigating Interdomain Routing Policies in the Wild ”, IMC 2015
-Lychev et al. “BGP Security in Partial Deployment: Is the Juice Worth the Squeeze?”, SIGCOMM 2013

Defining problems and make protocol engineering decisions through  
realistic evaluations is difficult also because we know little about the 
structure and dynamics of the BGP ecosystem!
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1. Literature shows that we need more/better data 
•more info from the protocol/routers  

Generation

Collection

Injection

Processing 
& Analysis

Attempts to generate more info  
(not much traction in the past): 
•RFC 4384 BGP Communities for Data Collection 
•draft-ymbk-grow-bgp-collector-communities

two issues - somehow related
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1. Literature shows that we need more/better data 
•more info from the protocol/routers, more collectors, 

Generation

Collection

Injection

Processing 
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Attempts to generate more info  
(not much traction in the past): 
•RFC 4384 BGP Communities for Data Collection 
•draft-ymbk-grow-bgp-collector-communities

two issues - somehow related
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1. Literature shows that we need more/better data 
•more info from the protocol/routers, more collectors, more experimental 
testbeds, … 

Generation

Collection

Injection

Processing 
& Analysis

Inject/Receive Routes & Traffic.  
PEERING - http://peering.usc.edu 
Schlinker et al. “PEERING: An AS for 
Us”, HotNets 2014

Attempts to generate more info  
(not much traction in the past): 
•RFC 4384 BGP Communities for Data Collection 
•draft-ymbk-grow-bgp-collector-communities

two issues - somehow related
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1. Literature shows that we need more/better data 
•more info from the protocol/routers, more collectors, more experimental 
testbeds, … 

2. But we also need better tools to learn from the data 
•to make data analysis: easier, faster, able to cope with BIG and heterogeneous data
•to monitor BGP in near-realtime
•tightening data collection, processing, visualization, …

Generation

Collection

Injection

Processing 
& Analysis

libBGPdump 
https://bitbucket.org/ripencc/bgpdump

two issues - somehow related
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1. Literature shows that we need more/better data 
•more info from the protocol/routers, more collectors, more experimental 
testbeds, … 

2. But we also need better tools to learn from the data 
•to make data analysis: easier, faster, able to cope with BIG and heterogeneous data
•to monitor BGP in near-realtime
•tightening data collection, processing, visualization, …

two issues - somehow related

Generation
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•Country-level Internet Blackouts 
 during the Arab Spring 

•Natural disasters affecting 
the infrastructure

Egypt, Jan 2011 
Government orders 
to shut down the 
Internet  

Japan, Mar 2011 
Earthquake of 
Magnitude 9.0 

(a) Christchurch (b) Tohoku

Figure 5: Networks selected within the estimated maximum radius of im-
pact of the earthquake (20km for Christchurch and 304km for Tohoku). We
based our geolocation on the publicly available MaxMind GeoLite Country
database.
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Figure 6: Measuring the impact of the earthquake on network connectivity
as seen by the telescope: value of ✓ for all networks within a given range
from the epicenter. The peak value ✓max reached by ✓ can be considered
the magnitude of the impact.

kilometers from its epicenter, consistent with the stronger magni-
tude of Tohoku’s earthquake (see Table ??) and news reports re-
garding its impact on buildings and power infrastructure. Table ??
summarizes these indicators found for both earthquakes.

Christchurch Tohoku
Magnitude (✓max) 2 at 6km 3.59 at 137km
Radius (⇢max) 20km 304km

Table 3: Indicators of earthquakes’ impact on network connectivity as ob-
served by the UCSD network telescope.

IBR traffic also reveals insight into the evolution of the earth-
quake’s impact on network connectivity. Figure ?? plots the num-
ber of distinct source IPs per hour of packets reaching the telescope
from networks within the �max = 20 km radius from the epicenter
of Christchurch’s earthquake. All times are in UTC. The time range
starts approximately one week before the earthquake and ends two
weeks after. We would not expect the IBR traffic to drop to zero,
for two reasons. First, not all networks are necessarily disabled by
the earthquake. Second, the geolocation database services we use
are not 100% accurate.

For a few days before the event, peaks are always above 140
unique IP addresses per hour (IPs/hour) on weekdays, sometimes
above 160 IPs/hour. In the 24 hours after the earthquake, the rate
drops, with a peak slightly above 100 IPs/hour. The IPs/hour rate

climbs slowly, reaching pre-event levels only after a week, which
correlates with the restoration of power in the Christchurch area [?].
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Figure 7: Rate of unique source IP addresses found in unsolicited traffic
reaching the UCSD network telescope from networks geolocated within a
⇢max = 20km range from the Christchurch earthquake epicenter. The
rate of distinct IPs per hour drops immediately after the earthquake. Peaks
before the earthquake were above 140-160 IPs/hour on weekdays (weekend
is on 19-20 February), while the first peak after the earthquake is slightly
above 100 IPs/hour. Levels remain lower for several days, consistent with
the slow restoration of power in the area.

Figure ?? plots the same graph for IBR traffic associated with the
Tohoku earthquake, within a maximum distance �max = 304 km
from the epicenter. The much steeper drop in the number of unique
IPs per hour sending IBR traffic is consistent with the Tohoku earth-
quake’s much larger magnitude than that of the Christchurch earth-
quake. In the days after the event the IBR traffic starts to pick up
again, but does not reach the levels from before the event during
the analyzed time interval, also consistent with the dramatic and
lasting impact of the Tohoku earthquake on Northern Japan.
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Figure 8: Rate of unique source IP addresses found in unsolicited traffic
reaching the UCSD network telescope from networks geolocated within
⇢max = 304km of the Tohoku earthquake epicenter. The rate of distinct
IPs per hour shows a considerable drop after the earthquake which does not
return to previous levels even after several days.

Figures ?? and ?? show that the rate of unique IP addresses per
hour observed by the telescope matches the dynamics of the earth-
quakes, reflecting their impact on network connectivity. In order to

EPICENTER 

Center for Applied Internet Data Analysis 
University of California San Diego

Dainotti et al. “Analysis of Country-wide  
Internet Outages Caused by Censorship”  
IMC 2011

Dainotti et al. “Extracting Benefit from 
Harm: Using Malware Pollution to Analyze 
the Impact of Political and Geophysical 
Events on the Internet”  
SIGCOMM CCR 2012
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IODA: Detection and Analysis of Internet Outages
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Country-wide Internet outages in Iraq that the government ordered 
in conjunction with the ministerial preparatory exams - Jul 2015

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]
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Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete com-
plete rather than expired.

The BGPViewServer is a potential bottleneck in our
distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.

In Figure 10, we show the output of the per-country
and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15, 18].

Similarly, we developed consumers that continuously
analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.

As mentioned (Section 2), BGPStream development
is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/
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post-event manual analysis

Egypt, Jan 2011 
Government orders 
to shut down the 
Internet  

4 months of work

Dainotti et al. “Analysis of Country-wide Internet Outages 
Caused by Censorship” IMC 2011
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In Dec. 2014 we made it 
possible for anybody to 
follow the North Korean 
disconnection almost live

https://charthouse.caida.org/public/kp-outage
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•Design goals:
-Efficiently deal with large amounts of distributed BGP data 
-Offer a time-ordered data stream of data from heterogeneous sources
-Support near-realtime data processing 
-Target a broad range of applications and users 
-Scalable
-Easily extensible 

•A software framework for historical and live BGP data analysis 

•Paper under submission at IMC ’16  
Orsini, King, Giordano, Giotsas, Dainotti 
               (older tech report on web site)
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•bgpstream.caida.org 
•download it! (version 1.1)
•active development - github.com/caida/bgpstream 
•Docs & Tutorials

•lots of people are using it!
•coordination with RouteViews, Colorado State BGPMon, RIPE NCC
•BGP Hackathon last February, NANOG Hackathon in June, …
•Funding from Cisco to collaborate and natively support OpenBMP
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1. A web service (“BGPStream Broker”)
•enables SIMPLE access to LOTS of heterogeneous BGP sources

2. LibBGPStream: 
•Acquires the data and provides to upper layers a realtime stream of BGP data
•makes it SIMPLE to process data from LOTS of heterogeneous BGP sources

3. Command-line tools and APIs in C and Python

Center for Applied Internet Data Analysis 
University of California San Diego

been an invaluable tool to support the analysis of BGP
data over the last decade, it lacks the advanced fea-
tures that we discuss in the next section (e.g., merging
and sorting data from multiple files and data sources,
supporting live processing, scalability, etc.).

A solution that provides both retrieval simplicity and
real-time access is BGPmon [2, 46, 62], a distributed
monitoring system that retrieves BGP information by
establishing BGP sessions with multiple ASes and that
offers a live BGP data stream in the XML format (which
also encapsulates the raw MRT data). Despite the fact
that BGPmon enables rapid prototyping of live mon-
itoring tools, it currently provides access to a limited
number of VPs (compared to the vast number of VPs
connected to RIS and RouteViews infrastructures), and
it cannot be used for historical processing.

Towards Realtime Streaming of BGP Data

On the other hand, in the context of live monitoring,
the major issue with popular public data sources such as
RouteViews and RIPE RIS, is their file-based distribu-
tion system and thus the latency with which collected
data is made available. Our measurements [24] show
that, in addition to the 5 and 15 minutes delay due to
file rotation duration, there is a small amount of vari-
able delay due to publication infrastructure. However,
99% of Updates dumps in the last year were available in
less than 20 minutes after the dump was begun. Since
these latency values are low enough to enable several
near-realtime monitoring applications, we began devel-
oping BGPStream with support for these data sources.

The research community recognizes the need for bet-
ter support of live BGP measurement data collection
and analysis. Since early 2015, we have been cooper-
ating with other research groups and institutions (e.g.,
RouteViews, BGPMon, RIPE RIS) to coordinate efforts
in this space [17]. Both RIPE RIS and BGPMon are
developing a new BGP data streaming service (includ-
ing investigating support for streamed MRT records),
and BGPMon partners with RouteViews to include in
the forthcoming next-generation BGPMon service all
of their collectors. Experience with the development of
BGPStream informed development efforts of the other
research teams and vice-versa. While BGPStream is
fully usable today, we envision that the forthcoming
developments of these projects, likely deployed in 2016,
will enhance BGPStream capabilities.

3. BGPSTREAM CORE

The BGPStream framework is organized in multiple
layers (Figure 2). We discuss the core layers (meta-data
providers and libBGPStream) in this section, whereas
we illustrate the upper layers, through case studies, in
the remainder of the paper. Meta-data providers serve
information about the availability and location of data

Figure 2: BGPStream framework overview. Blue boxes rep-
resent components of the framework; those marked with a star are
distributed as open source in the current BGPStream release [11].
Orange boxes represent external projects or placeholders. Section
numbers mark where each component is discussed in this paper.

from data providers, (either local or remote) which are
data sources external to the BGPStream project.

libBGPStream, the main library of the framework
(Section 3.3), provides the following functionalities: (i)
transparent access to concurrent dumps from multiple
collectors, of different collector projects, and of both
RIB and Updates; (ii) live data processing; (iii) data
extraction, annotation and error checking; (iv) gener-
ation of a time-ordered stream of BGP measurement
data; (iv) an API through which the user can specify
and receive a stream.

We distribute BGPStream with the following inde-
pendent modules: BGPReader, a command-line tool
that outputs the requested BGP data in ASCII format;
PyBGPStream, Python bindings to the libBGPStream
API; BGPCorsaro, a tool that uses a modular plugin
architecture to extract statistics or aggregate data that
are output at regular time bins.

3.1 High-level Properties

We designed the BGPStream framework with the fol-
lowing goals:

– Efficiently deal with large amounts of distributed
BGP data. In Section 2, we emphasized the importance
of performing analyses by taking advantage of a large
number of globally distributed vantage points.

– Offer a time-ordered stream of data from heteroge-
neous sources. BGPStream aims at providing a unified
sorted stream of data from multiple collectors. Record-
level sorting (rather than interleaving dump files) is
important in at least two cases: (i) when analyzing
long time intervals where time alignment cannot be
achieved by buffering the entire input, and (ii) when
an input data source provides a continuous stream of
data (rather than a discrete dump file), since such a

3

1

2

3
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5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.

Listing 1 shows sample code that uses the BGPStream
API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).

Listing 1 can be converted into a live monitoring pro-
cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.

To implement this model, the system iteratively alter-
nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or
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•A BGP record encapsulate an 
MRT record  

•Dumps are composed of multiple 
MRT records, whose type is 
specified in their header

-an update message is stored in a 
single MRT record, but multiple 
update messages can be in the same 
MRT record (see next slide)

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record
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Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].
To reduce the computational cost of sorting records,

we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.
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•An MRT record may group 
elements of the same type but 
related to different VPs or prefixes 

- e.g., routes to the same prefix from 
different VPs (in a RIB dump record)
- e.g., announcements from the same VP to 
multiple prefixes, but sharing a common 
path (in a Updates dump record)

•libBGPStream decomposes a 
record into a set of individual 
elements (BGPStream elems)

Table 1: BGPStream record fields.

Field Type Function

project string project name (e.g., Route Views)
collector string collector name (e.g., rrc00)
type enum RIB or Updates
dump time long time the containing dump was begun
position enum first, middle, or last record of a dump
time long timestamp of the MRT record
status enum record validity flag
MRT record struct de-serialized MRT record
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Figure 4: Intra- and inter-collector sorting in libBGP-
Stream. An example showing how RIB and Updates dumps
generated by a RIPE RIS collector (RRC01) and a Route Views
collector (RV2) are interleaved into a sorted stream. The 30 min-
utes (10 files) of BGP data are first separated into two disjoint
sets (of 6 and 4 files) based on overlapping file time intervals.
Then a multi-way merge is applied separately to the two sets,
yielding the stream depicted at the bottom.

announcements from the same VP, to multiple prefixes,
but sharing a common path (in a Updates dump record).
To provide access to individual elements, libBGPStream
decomposes a record into a set of BGPStream elem
structures (Table 2). We do not currently expose all
the BGP attributes contained in a MRT record in the
BGPStream elem; we will implement the remaining at-
tributes in a future release.

Table 2: BGPStream elem fields.

Field Type Function

type enum
route from a RIB dump, announce-
ment, withdrawal, or state message

time long timestamp of MRT record
peer address struct IP address of the VP
peer ASN long AS number of the VP
prefix* struct IP prefix
next hop* struct IP address of the next hop
AS path* struct AS path
old state* enum FSM state (before the change)
new state* enum FSM state (after the change)
* denotes a field conditionally populated based on type

5.4 Generating a sorted stream

libBGPStream generates a stream of records sorted
by the timestamps of the MRT records they encapsu-
late. Collectors write records in dump files with mono-
tonically increasing timestamps. However, additional
sorting is necessary when the stream is configured to
include MRT records stored in files with overlapping

time intervals3, which occurs in two cases: (i) when
reading dumps from more than one collector (inter-
collector sorting); (ii) when a stream is configured to
include both RIB and Updates dumps (intra-collector
sorting). Since each file can be seen as an ordered queue
of records, in practice, libBGPStream performs a multi-
way merge [24].

To reduce the computational cost of sorting records,
we perform multi-way merging separately on disjoint
sets of files from the dump file queue (given the cur-
rent number of collectors in Route Views and RIS, the
dump files queue can contain up to ≈500 files). How-
ever, to ensure correct sorting, files with overlapping
time intervals need to be in the same set. This problem
is exacerbated by the fact that the duration of Updates
dumps vary between projects.

We minimize the number of files per set by iteratively
applying the following process until the queue is empty:
(1) initialize a new set with the oldest file in the queue;
(2) recursively add files with time intervals overlapping
with at least one file already in the set; (3) remove the
set of files from the queue. Such sets currently contain
up to ≈150 files4.

For each set, libBGPStream simultaneously opens all
the files in the set and iteratively (i) extracts the old-
est MRT record from such files, and (ii) uses the MRT
record to populate a BGPStream record (Figure 4).

As noted in Section 3, sorting in live mode is best-
effort and needs to be managed also by the user appli-
cation. In Section 7.2, we provide an example of such
a solution tailored to a specific live monitoring applica-
tion.

6. RECORD PROCESSING

While users can write code that directly uses the ser-
vices offered by theBGPStream C API, we distribute
BGPStream with three solutions that will require writ-
ing much less (or no) code and fit a variegate set of
applications.

6.1 ASCII command-line tool

BGPReader is a tool to output in ASCII format the
BGPStream records and elems matching a set of filters
given via command-line options. This tool is meant to
support exploratory or ad-hoc analysis using command
line and scripting tools for parsing ASCII data.

BGPReader can be thought of as a drop-in replace-
ment of the analogous bgpdump tool (a command line
3We define the time interval associated with a dump file as
the time range covered by the timestamps of its records.
4We also use this set creation algorithm in the Broker to
ensure that files with overlapping intervals are returned in
a single window. Since the overall time interval of a set of
overlapping files is normally either 15 or 30 minutes, a 2
hour window will commonly contain approximately 8-16 file
sets.
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5.1 libBGPStream API

The libBGPStream user API provides the essential
functions to configure and consume a stream of BGP
measurement data and a systematic organization of the
BGP information into data structures. The API de-
fines a BGP data stream by the following parameters:
collector projects (e.g., Route Views, RIPE RIS), list
of collectors, dump types (RIB/Updates), time inter-
val start and either time interval end or live mode. A
stream can include dumps of different type and from
different collector projects.

Listing 1 shows sample code that uses the BGPStream
API to print out all the announcement and withdrawal
messages for a specific prefix as observed by VPs con-
nected to rrc00 (a RIPE RIS collector) and route-views2
(a Route Views collector) in the given time interval.
Any program using the libBGPStream C API consists
of a stream configuration phase and a stream reading
phase: first, the user defines the meta-data filters (lines
15-19), then the iteratively requests new records to pro-
cess from the stream (lines 25-42).

Listing 1 can be converted into a live monitoring pro-
cess simply by setting the end of the time interval to
-1.

5.2 Interface to Meta-Data and Data Providers

To access data and meta-data from the providers,
the library implements a “client pull” model, which (i)
enables efficient data retrieval without potential input
buffer overflow (i.e., data is only retrieved when the user
is ready to process it) and (ii) supports live mode.

To implement this model, the system iteratively alter-
nates between making meta-data queries to the Broker
(using the protocol described in Section 4), and opening
and processing the dump files that are returned. When
the Broker returns an empty dump file set, the system
signals to the user that the stream has ended. In live
mode however, the query mechanism is blocking: if the
Broker has no data available, a polling cycle will begin,
periodically re-issuing the request to the Broker until
either the response from the Broker contains new files
for processing, or libBGPStream receives an interrupt
signal.

5.3 Data structures and error checking

libBGPStream requires BGP dump files to comply
with the MRT format [6]. Dumps are composed of
MRT records, whose type is specified in their header [6].
An update message is stored in a single MRT record,
whereas a RIB dump is made of multiple MRT records.
Specifically, a collector dumps in each MRT record com-
posing a RIB dump, information related to a single pre-
fix. The BGPStream record structure contains a de-
serialized MRT record, as well as an error flag, and
additional annotations related to the originating dump

Listing 1 BGPstream prefix monitoring. An exam-
ple program that uses the BGPStream API to print out all
the announcement and withdrawal messages for a specific
prefix as observed by VPs connected to rrc00 and route-

views2. To use the BGPStream API, programs first con-
figure the stream (lines 15-19) and then iteratively request
records from the stream (lines 25-42).

int main(int argc, const char **argv) 1

{ 2

bgpstream_t *bs = bgpstream_create(); 3

bgpstream_record_t *record = bgpstream_record_create(); 4

bgpstream_elem_t *elem = NULL; 5

char buffer[1024]; 6

7

/* Define the prefix to monitor for (2403:f600::/32) */ 8

bgpstream_pfx_storage_t my_pfx; 9

my_pfx.address.version = BGPSTREAM_ADDR_VERSION_IPV6; 10

inet_pton(BGPSTREAM_ADDR_VERSION_IPV6, "2403:f600::", &my_pfx.address.ipv6); 11

my_pfx.mask_len = 32; 12

13

/* Set metadata filters */ 14

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "rrc00"); 15

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_COLLECTOR, "route-views2"); 16

bgpstream_add_filter(bs, BGPSTREAM_FILTER_TYPE_RECORD_TYPE, "updates"); 17

/* Time interval: 01:20:10 - 06:32:15 on Tue, 12 Aug 2014 UTC */ 18

bgpstream_add_interval_filter(bs, 1407806410, 1407825135); 19

20

/* Start the stream */ 21

bgpstream_start(bs); 22

23

/* Read the stream of records */ 24

while (bgpstream_get_next_record(bs, record) > 0) { 25

/* Ignore invalid records */ 26

if (record->status != BGPSTREAM_RECORD_STATUS_VALID_RECORD) { 27

continue; 28

} 29

/* Extract elems from the current record */ 30

while ((elem = bgpstream_record_get_next_elem(record)) != NULL) { 31

/* Select only announcements and withdrawals, */ 32

/* and only elems that carry information for 2403:f600::/32 */ 33

if ((elem->type == BGPSTREAM_ELEM_TYPE_ANNOUNCEMENT || 34

elem->type == BGPSTREAM_ELEM_TYPE_WITHDRAWAL) && 35

bgpstream_pfx_storage_equal(&my_pfx, &elem->prefix)) { 36

/* Print the BGP information */ 37

bgpstream_elem_snprintf(buffer, 1024, elem); 38

fprintf(stdout, "%s\n", buffer); 39

} 40

} 41

} 42

43

bgpstream_destroy(bs); 44

bgpstream_record_destroy(record); 45

return 0; 46

} 47

(Table 1).
To open MRT dumps, we use a version of libBGP-

dump [38] that we extended to: (i) read remote paths
(HTTP and HTTPS), (ii) support opening and read-
ing from multiple files in parallel from a single process,
and (iii) signal the event of a corrupted read. libBG-
PStream uses the latter to set the status field in the
BGPStream record to not-valid if the BGP dump file
cannot be opened (e.g., the website that we are trying to
access is temporarily down) or if the dump is corrupted
(e.g., the MRT length in the header is not compatible
with the size of the file). libBGPStream also marks
records that begin or end a dump file, allowing users to
collate records contained in a single RIB dump.

An MRT record (and therefore a BGPStream record)
may group elements of the same type but related to
different VPs or prefixes, such as routes to the same
prefix from different VPs (in a RIB dump record), or
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BGPREADER

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix
R|B|1445306400|routeviews|route-views.sfmix
R|R|1445306400|routeviews|route-views.sfmix|32354|206.197.187.5|1.0.0.0/24|206.197.187.5|32354 15169|15169|||
...
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2c0f:ffd8::/32|
2001:504:30::ba01:4061:1|14061 1299 33762|33762|1299:30000||
R|R|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2c0f:ffd8::/32|
2001:504:30::ba00:6939:1|32354 6939 37105 33762|33762|||
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|3803:b600::/32|
2001:504:30::ba01:4061:1|14061 2914 3549 27751|27751|2914:420 2914:1008 2914:2000 2914:3000||
R|E|1445306401|routeviews|route-views.sfmix
U|A|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2402:ef35::/32|
2001:504:30::ba03:2354:1|32354 6939 6453 4755 7633|7633|||
U|A|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2a02:158:200::/39|
2001:504:30::ba01:4061:1|14061 2914 44946|44946|2914:410 2914:1201 2914:2202 2914:3200||
...
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Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end
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Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF
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Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

How many AS paths are longer than the shortest path between two ASes due 
to routing policies? (directly correlates to the increase in BGP convergence time)

30 LINES OF 
PYTHON CODE

Center for Applied Internet Data Analysis 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…… In the paper you’ll find a case study that uses PyBGPStream to detect 
blackholing (a mitigation measure against denial-of-service attacks) and triggers 
traceroute measurements from RIPE Atlas to better characterize the event

Center for Applied Internet Data Analysis 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Figure 6: Monitoring of GARR (AS195) IP space using
the pfxmonitor plugin. The green line reports the number of
unique prefixes announced over time, the blue line reports the
number of unique origin ASes that are currently announcing such
prefixes. The spikes of the origin AS timeseries identify four hi-
jack events in which AS 198596 announces part of the IP space
belonging to AS195.

Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end
of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis of
historical or live data streams. In Section 7, we describe
a deployment of BGPCorsaro that runs 24/7 as a part
of our global Internet monitoring infrastructure.

As a sample plugin, we describe a stateful plugin that
monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.

We used this plugin to process data from all avail-
able Route Views and RIPE RIS collectors, for January
2015, setting the time bin size to 5 minutes, and pro-
viding as input to the plugin the IP ranges covered by
the 78 prefixes originated by AS137 (GARR, the Ital-

ian Academic and Research Network) as observed on
January 1st, 2015. Figure 6, shows a graphical repre-
sentation of the two time-series generated by the plugin:
the number of unique announced prefixes (in green) and
number of unique origin ASNs (in blue). While a small
oscillation of the number of prefixes announced is ex-
pected (as prefixes can be announced as aggregated or
de-aggregated), in 4 cases the number of unique an-
nouncing ASes shifts from 1 to 2, for about 1 hour.
Through manual analysis, we found that, during these
spikes, a portion of GARR’s IP space (specifically, 7
/24 prefixes) was also announced by TehnoGrup (AS
198596), a Romanian AS that appears to have no re-
lationship with GARR. The event on January 7th is
reported as an hijack attack by Dyn Research [29], and
given the similar nature of the other three events visible
in the graph (1st, 7th and 8th of January), the plugin
output suggests that three additional attacks occurred.
Although this approach cannot detect all types of hi-
jacking attacks, it is still a valid method to identify
suspicious events and serves to demonstrate the capa-
bilities of BGPCorsaro.

7. MONITORING THE GLOBAL INTERNET

In this section, we describe how we use BGPStream to
develop and deploy our global BGP monitoring infras-
tructure supporting research into macroscopic Internet
events. The purpose of this section is (i) to highlight
how BGPStream enables the development of a complex
monitoring system with stringent requirements, and (ii)
to exemplify how additional challenges that arise in such
complex BGP monitoring tasks — and which we do not
address by-design in BGPStream – can be solved.

In the IODA research project [13], we constantly mon-
itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [11] [12]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.

Another class of events that we are interested in de-
tecting and analyzing is BGP-based traffic hijacking
[10]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed

9

The “prefix-monitor” plugin 
(distributed with source) 
monitors a set of IP ranges as 
they are seen from BGP monitors 
distributed worldwide: 
- how many prefixes reachable
- how many origin ASes
- generates detailed logs

Hijacking of AS137 (GARR) - Jan 2015*

*Originally discovered by Dyn: 
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/ Center for Applied Internet Data Analysis 

University of California San Diego
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stream.add_filter(‘record-­‐type’,	
  ‘ribs’)	
  
stream.add_filter(’collector’,	
  ‘route-­‐views.sfmix’)	
  
stream.add_interval_filter(1445306400,1445306402)

bgpstream_add_filter(bs,	
  BGPSTREAM_FILTER_TYPE_COLLECTOR,	
  "rrc06");	
  
bgpstream_add_filter(bs,	
  BGPSTREAM_FILTER_TYPE_COLLECTOR,	
  "route-­‐views.jinx");	
  
bgpstream_add_filter(bs,	
  BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	
  "updates");	
  
bgpstream_add_interval_filter(bs,	
  1286705410,	
  1286709071);

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix -t updates
$ bgpcorsaro -w 1445306400,1445306402 -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

Experiments can be 
easily reproduced:  
a script defines the 
(public) data used



GET  A  LIVE  STREAM
libBGPStream keeps retrieving data as it becomes available
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stream.add_filter(‘record-­‐type’,	
  ‘ribs’)	
  
stream.add_filter(’collector’,	
  ‘route-­‐views.sfmix’)	
  
stream.add_interval_filter(1445306400,-­‐1)

bgpstream_add_filter(bs,	
  BGPSTREAM_FILTER_TYPE_COLLECTOR,	
  "rrc06");	
  
bgpstream_add_filter(bs,	
  BGPSTREAM_FILTER_TYPE_COLLECTOR,	
  "route-­‐views.jinx");	
  
bgpstream_add_filter(bs,	
  BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	
  "updates");	
  
bgpstream_add_interval_filter(bs,	
  1286705410,	
  BGPSTREAM_FOREVER);

$ bgpreader -c route-views.sfmix -t updates
$ bgpcorsaro -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

Experiments can be 
easily repeated:  

a script defines the 
(public) data used
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Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9
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Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9



CRUNCH BIG DATA
44Billion BGPElems processed w/ Spark + PyBGPStream

32
Center for Applied Internet Data Analysis 
University of California San Diego

Transit ASes 
2002 2004 2006 2008 2010 2012 2014 2016

0

100k

200k

300k

400k

500k

#
 IP

v
4

 p
re

fi
xe

s 
   

   
   

   
   

  

(a)

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016
0

500

1000

1500

2000

#
M

O
A

S
s
e
ts

(b)

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

0

10

20

30

40

50

60

Tr
an

si
tA

S
N

s
%

Transit ASNs % (IPv4)

# ASNs (IPv4)

Transit ASNs % (IPv6)

# ASNs (IPv6)

0

10K

20K

30K

40K

50K

60K

#
A

S
N

s

(c)

RIPE RIS
Route Views

rrc03

rv4

rv3

rrc04
rrc05

rrc07

rrc10

rrc11 rrc12

rrc13

rrc14rrc01

rrc16 saopaulo

eqix

rv2

rrc00

isctelxatl

linx

sydney

rrc15

eqix

0.0 1.0k 3.8k 8.5k 15k

(d)

Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger
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Figure 5: Results of historical analysis using PyBGPStream and Apache Spark. (a) heatmap depicting the growth of the IPv4
routing table in VPs over time. The y axis shows the number of prefixes in the Adj-RIB-out of VPs; warmer colors represent a higher
concentration of points. (b) number of unique MOAS sets (y axis) over time, aggregated into overall (top blue line) and per-collector
(other lines). (c) absolute number of ASNs (dashed lines) and percentage of those ASNs which are classified as transit – i.e., appearing
in the middle of an AS path – (solid lines), for both IPv4 (red lines) and IPv6 (blue lines). (d) community diversity as observed by VPs
(January 2016). VPs are depicted as circles with a diameter and color proportional to the number of distinct AS identifiers they observe.
Aggregated data (collector and project) is depicted as grey circles.

heatmap of data from 2,296 VPs (warmer colors rep-
resent a higher concentration of points from different
VPs). There are a few observations in this experiment
useful as future reference for similar studies: (i) partial-
feed VPs, i.e., those showing significantly smaller Adj-
RIB-outs, are numerous and they significantly skew the
distribution; only 710 VPs out of 2,296 are within 20
percentage points of the maximum at each time bin
(we adopt this definition of full-feed VP in the follow-
ing); (ii) two collectors (Route Views kixp and soxrs)
do not have a single full-feed peer, thus may not provide
enough information for most experiments; (iii) we find
that both the Route Views and RIPE RIS repositories
occasionally miss RIB dumps (34 per year on average)
on midnight of the 1st day of the month (thus we per-
form our analyses with data from the 15th day of the
month). In this experiment, we also compute, at each
level of aggregation (VP, collector, overall), the number
of unique prefixes and ASes observed, which we use to
normalize data in the other experiments.

Figure 5b shows the results of an experiment in which
we identified MOAS (Multi Origin AS) prefixes [63].
Study and detection of MOAS prefixes is relevant to
many problems [34], including the detection of BGP
hijacking activity [20]. The graph in Figure 5b, shows

the number of unique sets of ASes (MOAS sets in the
following) contributing to MOAS prefixes aggregated
into overall (top blue line) and per-collector (other lines).
Besides the slow growth in observable MOAS sets over
time, this graph highlights that to obtain a better view
of MOAS prefixes, it is important to analyze data from
as many collectors as are available: the number of MOAS
sets identified in the overall aggregation is always sig-
nificantly larger than the maximum number identified
by a single collector.

We then calculated the number of transit ASes (ASes
appearing in the middle of an AS path) observed for
both IPv4 and IPv6. The graph in Figure 5c, shows that
for IPv4, despite the nearly-linear growth in the num-
ber of ASes, the fraction of transit ASes over time has
been constant! For IPv6 instead, overall there has been
a constant decay in the fraction of transit ASes (edge
growing faster than transit). However, since around
2012, such decay has slowed down considerably, while
the total number of IPv6 ASes has kept growing at a
fast rate: the IPv6 graph is growing fast while its edge
and transit portions have recently started growing at
similar paces! (Approaching the property we observed
in the IPv4 graph over the last 15 years.) As of January
2016, though, the fraction of transit ASes is much larger

9
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GARR’s IP space (specifically, 7 /24 prefixes) was also
announced by TehnoGrup (AS 198596), a Romanian AS
that appears to have no relationship with GARR. The
event on January 7th is reported as an hijack attack
by Dyn Research [42], and given the similar nature of
the other three events visible in the graph (1st, 5th and
8th of January), the plugin output suggests that three
additional attacks occurred. Although this approach
cannot detect all types of hijacking attacks, it is still a
valid method to identify suspicious events and serves to
demonstrate the capabilities of BGPCorsaro.

6.2 Monitoring the Global Internet

In this section, we present a distributed architec-
ture, built on top of BGPStream and leveraging Apache
Kafka [1], to perform continuous global BGP monitor-
ing. We deployed this architecture to support research
into macroscopic Internet events (described in the next
paragraph), but its design is general enough to enable
various research and monitoring tasks that require to
continuously process large amounts of BGP data. In
addition, we plan to make publicly available the stream
of data this architecture generates, enabling other re-
searchers to take advantage of it without the need to
operate a cluster.

In the IODA research project [23], we constantly mon-
itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [21] [22]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.

Another class of events that we are interested in de-
tecting and analyzing is BGP-based traffic hijacking
[20]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed
from multiple VPs.

In order to monitor the Internet for these events in
a timely fashion, we need to maintain a global (i.e., for
each and every VP) view of BGP reachability informa-
tion updated with fine time granularity (e.g., few min-
utes). In general, a continuously updated global view
can be useful in many other applications, such as track-
ing AS paths containing a particular AS, verifying the

Figure 7: Distributed framework for live monitoring. For
each collector, we run an instance of BGPCorsaro with the RT
plugin which reconstructs the observable LocRIB of all of the
collector’s VPs. At the end of each time bin (e.g., 1 minute) each
BGPCorsaro publishes diffs to a Kafka cluster. Per-application
sync servers then align data from multiple collectors and signal
consumers to start processing.

occurrence of a route leak, spotting new (suspicious) AS
links appearing in the AS-graph, etc.

The proposed architecture is sketched in Figure 7 and
discussed in the following sections.

6.2.1 Reconstructing VPs routing tables

We developed a BGPCorsaro plugin, called routing-
tables (RT), that reconstruct the observable LocRIB of
each VP (herein referred to as the routing table of the
VP). We run one BGPCorsaro instance per collector
in order to distribute the computation across multiple
CPUs and/or hosts.

The RT plugin uses a RIB dump as a starting ref-
erence and then relies on the Update dumps to recon-
struct the evolution of the routing table, using subse-
quent RIB dumps for sanity checking and correction.
We save state and routing table information in a data
structure organized as a multi-dimensional hash table,
which can be seen as a matrix with prefixes as rows and
VPs as columns. Each cell contains the reachability-
attributes for the prefix (e.g, the AS path), the time-
stamp of when the cell was last modified by an Update
dump record, a A/W flag that indicates whether such
operation was an announcement or a withdrawal, and
a shadow cell, a similar structure except for the ab-
sence of the A/W flag. The shadow cell is used to store
data from a new RIB dump record before it is applied:
we apply all the records from a RIB dump only if none
of them is marked as corrupted by BGPStream. Each
time the final record of a (not corrupted) RIB dump is
received, the corresponding main and shadow cells are
compared and if the timestamp in the shadow cell is
more recent, then it is copied to the main cell (and the
A/W flag is set to “A”).

In Figure 8, we describe the process of maintaining a
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