
Chiara Orsini, Alistair King, Alberto Dainotti  
alberto@caida.org

Center for Applied Internet Data Analysis
University of California, San Diego

BGPStream: a framework for historical
analysis and real-time monitoring of BGP data

w w w .caida.org

mailto:alberto@unina.it?subject=

2
Center for Applied Internet Data Analysis 
University of California San Diego

Country-wide Internet outages in Iraq that the government ordered
in conjunction with the ministerial preparatory exams - Jul 2015

Time (UTC)
Visible IQ prefixes [y2] EarthLink (AS50710) [y1] ScopeSky (AS50597) [y1]

Elsuhd (AS197893) [y1] Hayat (AS57588) [y1] Hilal Al-Rafidain (AS198735) [y1]

22. Jun 6. Jul 20. Jul29. Jun 13. Jul
0

100

200

300

50

150

250

350

0

100

200

300

400

500

600

700

#
 p

re
fix

e
s #

 p
re

fixe
s

Figure 10: Visible Iraqi prefixes (June, 20- July, 20 2015).
The blue color indicates the number of prefixes observable in BGP
that geolocate in Iraq (y2), the remaining metrics are stacked
and show the number of unique prefixes announced by 5 Iraqi
providers (y1). There is an observable series of outages that starts
on June 27, and ends on July 15: the outages happen at a regu-
lar frequency, for a period of about 3 hours, between 2:00am and
5:00am UTC. Such outages have been reported by [5, 15, 18], ac-
cording to the press the government ordered a complete shutdown
of Internet service in the country for three hours.

of the latency at which data providers publish dumps
and considering the trade-off with memory footprint:
when processing data from all Route Views and RIPE
RIS collectors (31), a 30 minute sliding-window buffer
requires ≈60GB of memory and causes 99% of BGP
views to be published because they are complete com-
plete rather than expired.

The BGPViewServer is a potential bottleneck in our
distributed architecture: as the number of collectors
grows, so does the amount of data that the server must
receive, process and publish every minute. Although
this is not a problem given current data volumes, we
architected the server to process each time bin inde-
pendently of others, allowing multiple server instances
to be run (potentially on separate hosts), with BGP-
Corsaro processes distributing data amongst them in a
round-robin fashion.

7.3 BGPViewConsumers

A BGPViewConsumer is an independent process that
receives BGP views from the BGPViewServer using a
publish-subscribe paradigm. We developed two BG-
PViewConsumers aimed at near-realtime detection of
per-country and per-AS outages (Figure 7). Both con-
sumers select the prefixes observed by full-feed VPs,
i.e., those that announce at least 400,000 IPv4 pre-
fixes or 10,000 IPv6 prefixes (similarly to the heuris-
tic in [28]), and continuously monitor their visibility.
Specifically, they compute the number of prefixes that

are geo-located to each country as well as the number
of prefixes announced by each single AS. Each time a
BGPViewConsumer finishes processing a BGP view, it
sends the results of its computation to a Time Series
Monitoring system, which permanently stores them, per-
forms automated detection, and enables data visualiza-
tion.

In Figure 10, we show the output of the per-country
and per-AS outages consumers over a period of 1 month,
(June, 20 to July, 20 2015), selecting only the visibility
results associated with Iraq and 5 of the biggest Iraqi
ISPs. The noticeable drops, in terms of number of vis-
ible prefixes, identify a sequence of country-wide Inter-
net outages that the government ordered in conjunction
with the ministerial preparatory exams [5, 15, 18].

Similarly, we developed consumers that continuously
analyze AS paths in the BGP views, looking for sus-
picious announcements (e.g., multiple unrelated ASes
announcing overlapping portions of the address space,
or creating a new edge in the AS graph) as part of
a detection system to identify BGP hijacking events
[10]. Timely detection of suspicious BGP events en-
ables triggering on-demand data-plane measurements
(i.e., traceroutes), which are useful to correlate infor-
mation from the control and data planes and identify
potential mismatches (such as in the presence of man-
in-the-middle attacks).

8. CONCLUSIONS

BGPStream targets a broad range of applications and
users. We hope that it will enable novel analyses, de-
velopment of new tools, educational opportunities, as
well as feedback and contributions to our platform. We
also plan to make available, as Web services, global live
monitoring platforms based on the architecture briefly
discussed in Section 7.

As mentioned (Section 2), BGPStream development
is part of a collaborative effort with other researchers
and data providers, such as Route Views and BGPMon,
to coordinate progress in this space [7]. We plan to
enable new features in the near future (e.g., exposing
BGP community attributes) and support for more data
formats (e.g., JSON exports from ExaBGP [17]).

9. REFERENCES
[1] Colorado State University. BGPmon.

http://www.bgpmon.io/, 2015.
[2] S. Anisseh. Internet Topology Characterizationon on AS

Level. Master’s thesis, KTH, School of Electrical
Engineering (EES), Communication Networks, KTH
ROYAL INSTITUTE OF TECHNOLOGY, 10 2012.

[3] Apache. Apache Spark. http://spark.apache.org/, 2015.
[4] G. D. Battista, M. Rimondini, and G. Sadolfo. Monitoring

the status of MPLS VPN and VPLS based on BGP
signaling information. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
237–244. IEEE, 2012.

[5] D. Bernard. Iraqi Internet Experiencing ’Strange’ Outages.
http://www.voanews.com/content/

12

www.caida.org/funding/ioda/

BGP EVENTS & DYNAMICS
IODA: Detection and Analysis of Internet Outages

IODA: Detection and Analysis of Internet Outages

3

of

 P
re

fix
es

of

 U
ni

qu
e

So
ur

ce
 IP

s

Outage of AS11351(Time Warner Cable LLC)
September 30, 2015

BGP EVENTS & DYNAMICS

www.caida.org/funding/ioda/Center for Applied Internet Data Analysis 
University of California San Diego

Hijacks: detection of MITM BGP attacks

44

normal path
hijacked path

S

D A

S source (poisoned) D dest (hijacked prefix) A attacker

normal path  
used to complete 
the attack

www.caida.org/funding/hijacks/

BGP EVENTS & DYNAMICS

Center for Applied Internet Data Analysis 
University of California San Diego

5

BGPDOWNLOADER

BGPSTREAM LIBRARY

BGPCORSARO

BGPWATCHER

BGPREADER

BGPDUMP

PEERTABLESFULLPFXS

PER-AS
VISIBILITY

…
PER-REGION

VISIBILITY

BGPARCHIVE

B G P T R E A M

CHARTH USE

BGP

IBR

Active Probing

data
 processing

libiPmeta

libcorsaro I/O loggingintervals

interval endprocess packetinitialize finalizeinterval start

.log

lib
tr
ac

e

tools corsarocor-aggcor2ascii

.cor

[your name here]

.pcap

plugins Flow-Tuple DoS [yours!]

.ft.cor .dos.cor [.you.cor]

Corsaro

l
i
b
T
i

m
e
S
e
r
i
e
s

Geo-location

pfx-to-AS

Whisper

Detection &
Inference

Graphite

Charthouse
Backend

Charthouse
Frontend

IODA SYSTEM DIAGRAM
(toy diagram)

Center for Applied Internet Data Analysis 
University of California San Diego

6

BGPDOWNLOADER

BGPSTREAM LIBRARY

BGPCORSARO

BGPWATCHER

BGPREADER

BGPDUMP

PEERTABLESFULLPFXS

PER-AS
VISIBILITY

…
PER-REGION

VISIBILITY

BGPARCHIVE

B G P T R E A M

CHARTH USE

BGP

IBR

Active Probing

data
 processing

libiPmeta

libcorsaro I/O loggingintervals

interval endprocess packetinitialize finalizeinterval start

.log

lib
tr
ac

e

tools corsarocor-aggcor2ascii

.cor

[your name here]

.pcap

plugins Flow-Tuple DoS [yours!]

.ft.cor .dos.cor [.you.cor]

Corsaro

l
i
b
T
i

m
e
S
e
r
i
e
s

Geo-location

pfx-to-AS

Whisper

Detection &
Inference

Graphite

Charthouse
Backend

Charthouse
Frontend

IODA SYSTEM DIAGRAM
(toy diagram)

Center for Applied Internet Data Analysis 
University of California San Diego

7

bgpstream.caida.org

Center for Applied Internet Data Analysis 
University of California San Diego

BGPCORSARO
Example: monitor your own address space on BGP

8

Time (UTC)

Origin ASes [y2]# Prefixes [y1]

26. Jan5. Jan 12. Jan 19. Jan
0

20

40

60

80

100

0

1

2

#
 p

re
fi
x
e

s

#
 o

rig
in

 A
S

e
s

Figure 6: Monitoring of GARR (AS195) IP space using
the pfxmonitor plugin. The green line reports the number of
unique prefixes announced over time, the blue line reports the
number of unique origin ASes that are currently announcing such
prefixes. The spikes of the origin AS timeseries identify four hi-
jack events in which AS 198596 announces part of the IP space
belonging to AS195.

Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end
of a time bin even when processing data from mul-
tiple collectors.

Both the core and the plugins of BGPCorsaro are
written in C in order to support high-speed analysis of
historical or live data streams. In Section 7, we describe
a deployment of BGPCorsaro that runs 24/7 as a part
of our global Internet monitoring infrastructure.

As a sample plugin, we describe a stateful plugin that
monitors prefixes overlapping with a given set of IP ad-
dress ranges. For each BGPStream record, the plugin:
(1) selects only the RIB and Updates dump records re-
lated to prefixes that overlap with the given IP address
ranges. (2) tracks, for each <prefix, VP> pair, the ASN
that originated the route to the prefix. At the end of
each time bin, the plugin outputs the timestamp of the
current bin, the number of unique prefixes identified
and, the number of unique origin ASNs observed by all
the VPs.

We used this plugin to process data from all avail-
able Route Views and RIPE RIS collectors, for January
2015, setting the time bin size to 5 minutes, and pro-
viding as input to the plugin the IP ranges covered by
the 78 prefixes originated by AS137 (GARR, the Ital-

ian Academic and Research Network) as observed on
January 1st, 2015. Figure 6, shows a graphical repre-
sentation of the two time-series generated by the plugin:
the number of unique announced prefixes (in green) and
number of unique origin ASNs (in blue). While a small
oscillation of the number of prefixes announced is ex-
pected (as prefixes can be announced as aggregated or
de-aggregated), in 4 cases the number of unique an-
nouncing ASes shifts from 1 to 2, for about 1 hour.
Through manual analysis, we found that, during these
spikes, a portion of GARR’s IP space (specifically, 7
/24 prefixes) was also announced by TehnoGrup (AS
198596), a Romanian AS that appears to have no re-
lationship with GARR. The event on January 7th is
reported as an hijack attack by Dyn Research [29], and
given the similar nature of the other three events visible
in the graph (1st, 7th and 8th of January), the plugin
output suggests that three additional attacks occurred.
Although this approach cannot detect all types of hi-
jacking attacks, it is still a valid method to identify
suspicious events and serves to demonstrate the capa-
bilities of BGPCorsaro.

7. MONITORING THE GLOBAL INTERNET

In this section, we describe how we use BGPStream to
develop and deploy our global BGP monitoring infras-
tructure supporting research into macroscopic Internet
events. The purpose of this section is (i) to highlight
how BGPStream enables the development of a complex
monitoring system with stringent requirements, and (ii)
to exemplify how additional challenges that arise in such
complex BGP monitoring tasks — and which we do not
address by-design in BGPStream – can be solved.

In the IODA research project [13], we constantly mon-
itor the Internet to detect and characterize phenomena
of macroscopic connectivity disruption [11] [12]. We
combine information from different types of measure-
ment, such as active probing, passive traffic analysis,
and BGP data. In the case of BGP, our objective is to
understand whether a set of prefixes (that, e.g., share
the same geographical region, or the same origin AS)
are globally reachable or not. Information from a single
VP is not sufficient to verify the occurrence of an out-
age, in fact, a prefix may be not reachable from the VP
because of a local routing failure. On the other hand, if
several VPs, topologically and geographically dispersed,
simultaneously lose visibility of a prefix, then it is very
likely that the prefix itself is undergoing an outage.

Another class of events that we are interested in de-
tecting and analyzing is BGP-based traffic hijacking
[10]. The most common hijacks manifest as two or
more distinct ASes announcing exactly the same pre-
fix, or a portion of the same address space, at the same
time. In order to detect such events, it is essential to
compare the prefix reachability information as observed

9

The “prefix-monitor” plugin
(distributed with source) 
monitors a set of IP ranges as
they are seen from BGP monitors
distributed worldwide:
- how many prefixes reachable
- how many origin ASes
- generates detailed logs

Hijacking of AS137 (GARR) - Jan 2015*

*Originally discovered by Dyn: 
http://research.dyn.com/2015/01/vast-world-of-fraudulent-routing/ Center for Applied Internet Data Analysis 

University of California San Diego

PYBGPSTREAM
Example: studying AS path inflation

9

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

Listing 2 pyBGPstream AS path comparison.

from _pybgpstream import BGPStream, BGPRecord, BGPElem 1

from collections import defaultdict 2

from itertools import groupby 3

import networkx as nx 4

5

stream = BGPStream() 6

as_graph = nx.Graph() 7

rec = BGPRecord() 8

bgp_lens = defaultdict(lambda: defaultdict(lambda: None)) 9

stream.add_filter(’record-type’,’ribs’) 10

stream.add_interval_filter(1438415400,1438416600) 11

stream.start() 12

13

while(stream.get_next_record(rec)): 14

elem = rec.get_next_elem() 15

while(elem): 16

monitor = str(elem.peer_asn) 17

hops = [k for k, g in groupby(elem.fields[’as-path’].split(" "))] 18

if len(hops) > 1 and hops[0] == monitor: 19

origin = hops[-1] 20

for i in range(0,len(hops)-1): 21

as_graph.add_edge(hops[i],hops[i+1]) 22

bgp_lens[monitor][origin] = \ 23

min(filter(bool,[bgp_lens[monitor][origin],len(hops)])) 24

elem = rec.get_next_elem() 25

for monitor in bgp_lens: 26

for origin in bgp_lens[monitor]: 27

nxlen = len(nx.shortest_path(as_graph, monitor, origin)) 28

print monitor, origin, bgp_lens[monitor][origin], nxlen 29

option sets bgpdump output format), which is widely
used by researchers and practitioners. However, BG-
PReader adds features such as the support to read data
from multiple files, collectors, and projects in a single
process and to configure filters. Additionally, due to the
parallelized reading of dump files provided by libBGP-
Stream, processing multiple files is faster compared to
bgpdump: for example, BGPReader processes 24 hours
of data (August 15 2015), from 18 Route Views and 13
RIPE RIS collectors, in 156 minutes, whereas bgpdump
takes 202 minutes (a 23% improvement).

6.2 Python bindings

pyBGPStream is a Python package that exports
all the functions and data structures provided by the
libBGPStream C API. We bind directly to the C API
instead of implementing the BGPStream functions in
Python, in order to leverage both the flexibility of the
Python language (and the large set of libraries and
packages available) as well as the performance of the
underlying C library.

Even if an application implemented in Python using
pyBGPStream would not achieve the same performance
as an equivalent C implementation, pyBGPStream is an
effective solution for: rapid prototyping, implementing
programs that are not computationally demanding, or
programs that are meant to be run offline (i.e., there
are no time constraints associated with a live stream of
data).

In Listing 2, we show a practical example related to a
research topic commonly studied in literature: the AS
path inflation [19, 42]. The problem consists in quan-
tifying the extent to which routing policies inflate the

AS path length discrepancy PMF

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

l
i
n

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

0.1

0 1 2 3 4 5 6 7 8 9 10 11

l
o
g

AS path length difference[d]

Figure 5: The extent of AS paths inflation. Probability mass
function of the difference in length between the shortest AS path
length observed in BGP and in the undirected graph for the same
<monitor,origin> pairs.

AS paths (i.e., how many AS paths are longer than the
shortest path between two ASes due to the adoption of
routing policies), and it has practical implications, as
the phenomenon directly correlates to the increase in
BGP convergence time [25]. In less than 30 lines of code,
the program compares the AS-path length observed in a
set of BGP RIB dumps and the corresponding shortest
path computed on a simple undirected graph built using
the AS adjacencies observed in the AS paths. The pro-
gram reads the 8am RIB dumps provided by all RIS and
Route Views collectors on August 1st 2015, and extracts
the minimum AS-path length observed between a mon-
itor and each origin AS. While reading the RIB dumps,
the program also maintains the AS adjacencies observed
in the AS path. We then use the NetworkX package [31]
to build a simple undirected graph (i.e., a graph with no
loops, where links are not directed) and we compute the
shortest path between the same <monitor,origin> AS
pairs observed in the RIB dumps. Figure 5 compares
path lengths of 10M unique <monitor,origin> AS pairs
and shows that, in 30% of cases, inflation of the path
between the monitor and the origin AS accounts for 1
to 11 hops.

6.3 Continuous monitoring using C plugins

BGPCorsaro is a tool to continuously extract de-
rived data from a BGP stream in regular time bins.
Its architecture is based on a pipeline of plugins, which
continuously process BGPStream records. Plugins can
be either:

• Stateless: e.g., performing classification and tag-
ging of BGP records; plugins following in the pipeline
can use such tags to inform their processing.

• Stateful: e.g., extracting statistics or aggregating
data that are output at the end of each time bin.
Since libBGPStream provides a sorted stream of
records, BGPCorsaro can easily recognize the end

8

How many AS paths are longer than the shortest path between two ASes due
to routing policies? (directly correlates to the increase in BGP convergence time)

30 LINES OF
PYTHON CODE

Center for Applied Internet Data Analysis 
University of California San Diego

command-line tool for ASCII output w/ filters

10

BGPREADER

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix
R|B|1445306400|routeviews|route-views.sfmix
R|R|1445306400|routeviews|route-views.sfmix|32354|206.197.187.5|1.0.0.0/24|206.197.187.5|32354 15169|15169|||
...
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2c0f:ffd8::/32|
2001:504:30::ba01:4061:1|14061 1299 33762|33762|1299:30000||
R|R|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2c0f:ffd8::/32|
2001:504:30::ba00:6939:1|32354 6939 37105 33762|33762|||
R|R|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|3803:b600::/32|
2001:504:30::ba01:4061:1|14061 2914 3549 27751|27751|2914:420 2914:1008 2914:2000 2914:3000||
R|E|1445306401|routeviews|route-views.sfmix
U|A|1445306401|routeviews|route-views.sfmix|32354|2001:504:30::ba03:2354:1|2402:ef35::/32|
2001:504:30::ba03:2354:1|32354 6939 6453 4755 7633|7633|||
U|A|1445306401|routeviews|route-views.sfmix|14061|2001:504:30::ba01:4061:1|2a02:158:200::/39|
2001:504:30::ba01:4061:1|14061 2914 44946|44946|2914:410 2914:1201 2914:2202 2914:3200||
...

Center for Applied Internet Data Analysis 
University of California San Diego

 .
bgpstream.caida.org

11
w w w .caida.org

Meta-Data Providers Data Providers

1. A web service (“BGPStream Broker”)
•enables SIMPLE access to LOTS of heterogeneous BGP sources

2. LibBGPStream:
•Acquires the data and provides to upper layers a realtime stream of BGP data
•makes it SIMPLE to process data from LOTS of heterogeneous BGP sources

3. Command-line tools and APIs in C and Python

Center for Applied Internet Data Analysis 
University of California San Diego

 .
bgpstream.caida.org

•Design goals:
-Efficiently deal with large amounts of distributed BGP data
-Offer a time-ordered data stream of data from heterogeneous sources
-Support near-realtime data processing
-Target a broad range of applications and users
-Scalable
-Easily extensible

w w w .caida.org

Meta-Data Providers Data Providers 12
Center for Applied Internet Data Analysis 
University of California San Diego

NO MANUAL DOWNLOADS
libBGPStream talks to the broker and gets the data

13

stream.add_filter(‘record-­‐type’,	
 ‘ribs’)	

stream.add_filter(’collector’,	
 ‘route-­‐views.sfmix’)	

stream.add_interval_filter(1445306400,1445306402)

bgpstream_add_filter(bs,	
 BGPSTREAM_FILTER_TYPE_COLLECTOR,	
 "rrc06");	

bgpstream_add_filter(bs,	
 BGPSTREAM_FILTER_TYPE_COLLECTOR,	
 "route-­‐views.jinx");	

bgpstream_add_filter(bs,	
 BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	
 "updates");	

bgpstream_add_interval_filter(bs,	
 1286705410,	
 1286709071);

$ bgpreader -w 1445306400,1445306402 -c route-views.sfmix -t updates
$ bgpcorsaro -w 1445306400,1445306402 -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

GET A LIVE STREAM
libBGPStream keeps retrieving data as it becomes available

14

stream.add_filter(‘record-­‐type’,	
 ‘ribs’)	

stream.add_filter(’collector’,	
 ‘route-­‐views.sfmix’)	

stream.add_interval_filter(1445306400,-­‐1)

bgpstream_add_filter(bs,	
 BGPSTREAM_FILTER_TYPE_COLLECTOR,	
 "rrc06");	

bgpstream_add_filter(bs,	
 BGPSTREAM_FILTER_TYPE_COLLECTOR,	
 "route-­‐views.jinx");	

bgpstream_add_filter(bs,	
 BGPSTREAM_FILTER_TYPE_RECORD_TYPE,	
 "updates");	

bgpstream_add_interval_filter(bs,	
 1286705410,	
 BGPSTREAM_FOREVER);

$ bgpreader -c route-views.sfmix -t updates
$ bgpcorsaro -p ris

w w w .caida.org

Meta-Data Providers Data Providers
Center for Applied Internet Data Analysis 
University of California San Diego

• Access BMP-generated data from BGPStream

• Data available with ~1min latency

• Developed in collaboration with  
Tim Evens @ Cisco and 
John Kemp @ Route Views

• Experimental integration using 
OpenBMP to export MRT files 
(native BMP support 
planned for BGPStream)

MRT consumer

BMP DATA SOURCES
(experimental)

15
Center for Applied Internet Data Analysis 
University of California San Diego

• Current BMP feeds provided courtesy of Route Views, Cisco, and Randy Bush

BMP DATA SOURCES
Data Providers

16
Center for Applied Internet Data Analysis 
University of California San Diego

BMP DATA SOURCES
don’t need to download a new BGPStream version

•Available to all existing BGPStream installs
- Use filter to select data from provider “caida-bmp”
- E.g. bgpreader -p caida-bmp -w 1453912260

•send us a bmp feed!
- contact bgpstream-info@caida.org

17
Center for Applied Internet Data Analysis 
University of California San Diego

THANKS

18

Center for Applied Internet Data Analysis 
University of California San Diego

w w w .caida.org

bgpstream.caida.org

