CAIDA update

P. K. Clayfay, CAIDA
ISI/USC
Marina del Rey, CA
10 February 2017
CAIDA Update

• Data collection activities
 • Ongoing measurements
 • Data storage status
 • Data dissemination statistics
 • Recent publications

• Related other activities
 • New data infrastructure
 • Related research activities

• Open issues
 • Portal, New Data Types
Data Collection Infrastructures

- **Ark Platform (as of Sept 2016)**
 - 170 monitors in 59 countries
 - 74 IPv6-enabled
 - 124 Raspberry PIs

- **UCSD Network Telescope**
 - As of January 2017, captures more than 1TB of compressed traffic trace data per day.
 - 28 TB: last full month (Aug 2016)
 - 182 TB: 2015
 - 211 TB: YTD 2016 (as of 9/13/16)
 - 288 TB: last 12 months at NERSC (as of 9/13/16)
 - 703 TB: total archived at NERSC
<table>
<thead>
<tr>
<th>Datasets</th>
<th>Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Toplogy Measurements w/ Skitter</td>
<td>0</td>
</tr>
<tr>
<td>OC48 Peering Point Traces</td>
<td>3</td>
</tr>
<tr>
<td>Backscatter</td>
<td>10 (4 rejected)</td>
</tr>
<tr>
<td>DDoS 2007 Attack Dataset</td>
<td>3 (1 rejected)</td>
</tr>
<tr>
<td>IPv4 2013 Census Dataset</td>
<td>3</td>
</tr>
<tr>
<td>IPv4 Routed /24 Topology</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 Routed /24 DNS Names</td>
<td>0</td>
</tr>
<tr>
<td>IPv6 Topology</td>
<td>0</td>
</tr>
<tr>
<td>Internet Topology Data Kits (ITDK)</td>
<td>2 (1 withdrawn)</td>
</tr>
<tr>
<td>Patch Tuesday Dataset</td>
<td>3 (1 rejected)</td>
</tr>
<tr>
<td>Three Days of Conficker Dataset</td>
<td>4</td>
</tr>
<tr>
<td>Two-Days-in-2008 Telescope Dataset</td>
<td>3 (1 rejected)</td>
</tr>
<tr>
<td>UCSD Real-time Network Telescope Dataset</td>
<td>5 (1 rejected, 3 withdrawn)</td>
</tr>
<tr>
<td>UCSD Telescope Darknet Scanners Dataset</td>
<td>7 (1 rejected)</td>
</tr>
<tr>
<td>Witty Worm</td>
<td>2</td>
</tr>
</tbody>
</table>
New and Upcoming Data Sets

- (2) Macroscopic Internet Topology Data Kit (ITDK)
- IPv4 2013 Census Dataset
 http://www.caida.org/data/active/ipv4_2013_census_dataset.xml
 (available from IMPACT only)
- UCSD Network Telescope -- Darknet Scanners Dataset
 http://www.caida.org/data/passive/telescope-darknet-scanners_dataset.xml
 (available from IMPACT only)
- AS Border Mapping Dataset (coming soon)
- AS to Facilities Dataset (coming soon)
- Spoofer data

http://www.caida.org/data/publications/bydataset/index.xml#UCSD Network Telescope

<table>
<thead>
<tr>
<th>UCSD Network Telescope</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>backscatter-2004-2005</td>
<td>8</td>
</tr>
<tr>
<td>backscatter-2006</td>
<td>4</td>
</tr>
<tr>
<td>backscatter-2007</td>
<td>8</td>
</tr>
<tr>
<td>backscatter-2008</td>
<td>17</td>
</tr>
<tr>
<td>backscatter-generic</td>
<td>4</td>
</tr>
<tr>
<td>backscatter-tics</td>
<td>3</td>
</tr>
<tr>
<td>code-red worm</td>
<td>7</td>
</tr>
<tr>
<td>code-red-generic</td>
<td>2</td>
</tr>
<tr>
<td>telescope-2days-2008</td>
<td>12</td>
</tr>
<tr>
<td>telescope-3days-conficker</td>
<td>14</td>
</tr>
<tr>
<td>telescope-educational</td>
<td>3</td>
</tr>
<tr>
<td>telescope-generic</td>
<td>7</td>
</tr>
<tr>
<td>telescope-patch-tuesday</td>
<td>2</td>
</tr>
<tr>
<td>telescope-real-time</td>
<td>5</td>
</tr>
<tr>
<td>witty worm (public)</td>
<td>1</td>
</tr>
<tr>
<td>witty worm (restricted)</td>
<td>17</td>
</tr>
<tr>
<td>witty-generic</td>
<td>6</td>
</tr>
</tbody>
</table>
Tools under consideration

- **Vela**: On-Demand Topology Measurement Service of CAIDA’s Ark infrastructure
 - Web interface https://vela.caida.org/
 - Command-Line interface
Query Traces for IP Paths

Displays traceroute paths.

Query

Target Address/Prefix/AS/Country:

Second Target for _neigh_ Query:

Separate multiple targets with commas.
Example: 1.2.3.4, 10.0.0.0/8, as1234, .sy

Start Date:
End Date:

Dates can be YYYY, YYYY-MM, or YYYY-MM-DD. End date is exclusive.
Leave start/end (or both) blank for an open-ended range.

Query Method:

- dest
- addr
- neigh

Target Position/Neighbor Separation:
Max Traces:
Reverse Order

- **positive** position — hop distance relative to _beginning_ of trace
- **negative** position — hop distance relative to _end_ of trace
- **neighbor** separation — hop distance _between_ neighboring targets

Vantage Point

- By Name
- By Continent
- By Country
- By Org Type

Monitors with IPv6 have an asterisk next to their name.

Submit
Reset
Tools: Henya

- **Henya**: Large-Scale Internet Topology Query System
 - Access via the Vela web interface https://vela.caida.org/
 - 9 years of “Routed /24” trace routes
 - 47 billion traces in 20TB of files
 - growing yearly by 10 billion traces
 - 1 year of “Prefix Probing” trace routes
 - growing yearly by 9 billion traces

![Graph showing IPv4 data growth from 2007 to 2016]
Henya Topology Queries

• find occurrences of traceroute path elements
• ⟨targets⟩ = IP addresses, prefixes, ASes, or countries

• Queries:
 • traceroutes toward ⟨targets⟩
 • traceroutes containing one or more ⟨targets⟩

• Parameters:
 • measurement vantage points
 • data collection time periods
 • position of ⟨targets⟩ in path
 • hop distance between sets of ⟨targets⟩
Henya Query Complexity

- the most complex case:
 - traceroutes containing two or more \{targets\}
 - precisely: traceroutes containing some hop $h_1 \in \{targets_1\}$, $h_2 \in \{targets_2\}$, ...
 - example: traceroutes containing hops in both \{Germany\} and \{Japan\}

- harder:
 - traceroutes with hops in \{Germany or UK or France\} and hops in \{ATT or Level3 network\} and hops in \{Amsterdam Internet Exchange\}

find intersection of two sets
Vela and Henya Access Policies

- Currently accepting requests for accounts on Vela
- Currently accepting requests for early access to Henya and a subset of total topology dataset.
Restricted Dataset Requests

received/approved requests for restricted datasets

* This graph now includes all passive traces (including OC192). Previous graphs included only OC48 requests.

http://www.caida.org/data/about/
Users downloading public data

Number of users downloading public data

- Anonymized Internet traces
- UCSD Telescope
- Ark topology
- AS Relationships
- Ark AS links
- Skitter topology
- Other public topology
- Published data supplements

http://www.caida.org/data/about/
Users downloading restricted data

* This graph now includes all passive traces (including OC192). Previous graphs included only OC48 downloads.

http://www.caida.org/data/about/
Public data downloaded

Amount of public data downloaded

- Anonymized Internet traces
- UCSD Telescope
- Ark topology
- AS Relationships
- Ark AS links
- Skitter topology
- Other public data
- Published data supplements

http://www.caida.org/data/about/
Restricted data downloaded

Amount of restricted data downloaded

- Anonymized Internet traces
- UCSD Telescope
- Ark topology
- Witty
- Backscatter
- DDoS
- DNS lookups
- DNS root/gTLD RTT

• Drop in topology data in 2016 due to making topology data public

http://www.caida.org/data/about/
Recent Related R&D Activities

• DHS: Spoofing measurement (spoofer.caida.org)
• New DHS project: Science of Internet Security: Technology and Experimental Research (SISTER)
• NSF: Internet Outage Detection and Analysis (IODA) (ioda.caida.org)
• NSF: Internet congestion mapping system (beamer.caida.org)
Software Systems for Surveying Spoofing Susceptibility

- DHS S&T funded project that seeks to minimize Internet's susceptibility to spoofed DDoS attacks

- Goal: develop, build, and operate multiple open-source software tools to assess and report on the deployment of source address validation (SAV) best anti-spoofing practices.

- [https://spoofer.caida.org/] \(<— plz download now!\)

- Will share data through IMPACT
Software Systems for Surveying Spoofing Susceptibility

Recent Tests

<table>
<thead>
<tr>
<th>Session</th>
<th>Timestamp</th>
<th>Client IP</th>
<th>ASN</th>
<th>Country</th>
<th>NAT</th>
<th>Spoof Private</th>
<th>Spoof Routable</th>
<th>v4 Adjacency Spoofer</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>73442</td>
<td>2016-09-28 11:57:32</td>
<td>62.195.54.x</td>
<td>6830 (LG-UPC)</td>
<td></td>
<td>yes</td>
<td>rewritten</td>
<td>rewritten</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73440</td>
<td>2016-09-28 11:57:10</td>
<td>37.235.50.x</td>
<td>57169 (EDIS-AS-EU)</td>
<td></td>
<td>no</td>
<td>blocked</td>
<td>received 78</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73439</td>
<td>2016-09-28 11:57:07</td>
<td>84.59.214.x</td>
<td>3209 (VODANET)</td>
<td></td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73438</td>
<td>2016-09-28 11:51:56</td>
<td>95.90.233.x</td>
<td>31334 (KABELDEUTSCHLAND-AS)</td>
<td></td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73437</td>
<td>2016-09-28 11:49:27</td>
<td>91.14.132.x</td>
<td>3320 (DTAG)</td>
<td></td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73435</td>
<td>2016-09-28 11:47:31</td>
<td>79.237.172.x</td>
<td>3320 (DTAG)</td>
<td></td>
<td>yes</td>
<td>rewritten</td>
<td>rewritten</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73434</td>
<td>2016-09-28 11:43:39</td>
<td>94.214.191.x</td>
<td>9143 (ZIGGO)</td>
<td></td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73431</td>
<td>2016-09-28 11:36:16</td>
<td>70.196.30.x</td>
<td>22394 (CELLCO)</td>
<td>usa (United States)</td>
<td>yes</td>
<td>blocked</td>
<td>rewritten</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73429</td>
<td>2016-09-28 11:30:12</td>
<td>213.221.218.x</td>
<td>15600 (FINECOM)</td>
<td>che (Switzerland)</td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73426</td>
<td>2016-09-28 11:21:08</td>
<td>122.252.250.x</td>
<td>24180 (RAILTEL-AS-IN)</td>
<td>ind (India)</td>
<td>yes</td>
<td>unknown</td>
<td>unknown</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73424</td>
<td>2016-09-28 11:08:37</td>
<td>37.201.192.x</td>
<td>6930 (LG-UPC)</td>
<td>deu (Germany)</td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73423</td>
<td>2016-09-28 11:08:43</td>
<td>128.151.13.x</td>
<td>20 (UR)</td>
<td>usa (United States)</td>
<td>no</td>
<td>unknown</td>
<td>unknown</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73421</td>
<td>2016-09-28 11:06:25</td>
<td>91.154.254.x</td>
<td>719 (ELISA-AS)</td>
<td>fin (Finland)</td>
<td>no</td>
<td>unknown</td>
<td>unknown</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73420</td>
<td>2016-09-28 10:56:58</td>
<td>47.29.88.x</td>
<td>55836 (RELIANCEJO-IN)</td>
<td>ind (India)</td>
<td>yes</td>
<td>rewritten</td>
<td>rewritten</td>
<td>none</td>
<td>Full report</td>
</tr>
<tr>
<td>73419</td>
<td>2016-09-28 10:46:13</td>
<td>86.88.134.x</td>
<td>1136 (KPN)</td>
<td>nld (Netherlands)</td>
<td>yes</td>
<td>blocked</td>
<td>blocked</td>
<td>none</td>
<td>Full report</td>
</tr>
</tbody>
</table>

http://spoofer.caida.org/recent_tests.php
The video will explain to a general audience the dangers of IP spoofing.

Working towards a filtered tomorrow.

http://spoofer.caida.org

We will end the video with a requester help.
• Using the versatile Ark measurement platform, we will conduct measurements and analysis for documented explanations of structural and dynamic aspects of the Internet infrastructure relevant to cybersecurity vulnerabilities
 • Task 1: Support for Macroscopic Security and Stability Monitoring and Analysis
 • Task 2: Mapping Peering Interconnections at the Router Level
 • Task 3: Mapping Peering Interconnections at the Facility Level
 • Task 4: Measurements of TCP Behavior to Understand Security Vulnerabilities
 • Task 5: Identifying Grey Market IPv4 Address Transfers
 • Task 6: Internet Router-Level Topology Mapping on Demand
• **Task 1:**
 - IPv4 Prefix-Probing Dataset
 http://www.caida.org/data/active/ipv4_prefix_probing_dataset.xml

• **Task 2:**
 - AS Border Mapping Dataset (February 2017)

• **Task 3:**
 - AS to Facilities Mapping Dataset (February 2017)
 - AS to Facilities Mapping Dataset annotated w/ approach to interconnection (private peering with cross-connect, public peering, private interconnects over the public switch fabric, and remote peering) (February/March 2017)
 - Alias resolved Interconnection (router-level map) (April 2017)
 - Global facility-aware map of interconnection (May 2017)
Detection and analysis of large-scale Internet infrastructure outages (IODA)

• Developing methods to infer location and extent of outages

• Goals: (1) investigate and define strategies and methodologies to fuse diverse data sources to detect & characterize outages, (2) define and refine system requirements for continuous monitoring & (near) real-time analysis (3) testing & experimental deployment

• Part of a 3 year NSF-funded SATC project
Detection and analysis of large-scale Internet infrastructure outages (IODA)

Libyan outages: (a) visibility of Libyan IPv4 prefixes in BGP (RouteViews, RIPE NCC RIS);
(b) unsolicited traffic to UCSD telescope from Libya.
IODA After Four Years (Today)

- Live detection and monitoring

https://ioda.caida.org
• High-level system view
Mapping Interdomain Internet Congestion

• Developing methods to measure the location and extent of interdomain congestion

• **Goals (1)** system to monitor interdomain links and their congestion state, **(2)** near real-time “congestion heat map” of the Internet, **(3)** increase transparency, empirical grounding of debate

• Part of a 3 year NSF-funded project on topology+congestion
Measurement System

- **Topology measurement**
- **TSLP**
- **On-demand measurement**

VP

AS relationship

BGP

IXP data

Link identification

WHOIS

Alias resolution

VP

topology data

Topology mapping

TSLP target selection

Measurement notification system

Links DB

Historical state

VP capability

Alerts DB

Alert system

Time series analysis

Data processing

Triggered meas scheduler

Triggered meas data

TSLP samples

Probing logic

Real-time querying

Visualization

Longitudinal views

Frontend

Backend System
Mapping Interdomain Internet Congestion

Congestion seen between Comcast
Contact Information

PI: k claffy, CAIDA
kc@caida.org
http://www.caida.org/