Alberto Dainotti
alberto@caida.org

Center for Applied Internet Data Analysis
University of California, San Diego
TALK OUTLINE

• **Context**: Large scale Internet Incidents
• **Need**: Combine interactive tools / live data / expertise in one place
• **HI\(^3\)**: definition and **approach**
• Hypothetical **examples** (focus on data types and diverse providers)
• High-level **diagram**
• **Development** Roadmap
• A demo of **functionalities** using the current proof of concept
• **Competition/Synergies**
LARGE-SCALE INCIDENTS

a threat to private and national assets

- **large-scale Internet incidents** (hijacks, outages, spam and fishing campaigns, botnet activities, scanning, large-scale bug exploitation) are a major threat to public safety and to both public and private strategic and financial assets

- Often:
 - unnoticed
 - **hard to understand** (dynamics, motivation, infrastructure used, source, target)
 - hard to mitigate, prevent, etc.
 - hard to assess the damage
 - hard to assess restoration
UNDER THE RADAR

the “sipscan” was massive and unnoticed

- February 2011 - 3M hosts covertly scanning the whole IPv4 Internet in 12 days
- Following months - Massive exploitation of VoIP infrastructure
 - VoIP Fraud costs $40 billion per year

UNDER THE RADAR

BGP mitm attacks constantly go unnoticed

The attackers initiated the hijacks at least 38 times, grabbing traffic from about 1,500 individual IP blocks sometimes for minutes, other times for days — and t

http://research.dyn.com/2013/11/mitm-internet-hijacking/
WE NEED

many features in one “place”

Effective (timely) analysis of these events requires

• ability to act **fast** with **agility**

• combination of data of different types and origins
 • sharing **live data**
 • on-the-fly data extraction/aggregation
 • interactive visual tools for quick exploration

• teamwork of heterogeneous expertise

• a **trusted** environment
towards a virtual situation room

• A web-based collaborative environment
• with trusted groups of vetted experts (through a legal framework)
• producing analyses with interactive and visual tools
• based on diverse sets of streamed (and historical) data
THE HI³ APPROACH

three key elements

1. Combination and correlation of diverse Internet cybersecurity data streams around a set of common dimensions: time and Internet Coordinates

2. Data analytics in the form of interactive exploratory data analysis and configurable event detection

3. Trusted realtime collaborative environment
THE HI^3 APPROACH

1. Combine/correlate diverse Internet cyber-security data: center data organization, processing, querying and visualization around a set of common dimensions: \textit{time and Internet Coordinates}

- **IP addresses** (IPs, /24s, /16s, …)
- **BGP**: prefixes, AS numbers, siblings, AS-relationships, AS customer cones
- **Topologies**: AS graph, router-level topology, physical (links, facilities, …)
- **Geopolitical layer**: geographic coordinates, administrative/political boundaries (country, region, county, province, city, zip code, building, etc.)
- **DNS**: records, active and passive databases
- **Whois** and routing registries
THE HI^3 APPROACH

2. Data analytics in the form of exploratory data analysis and configurable event detection

- interactive navigation through many (tens of millions) data streams
- interactive + live data visualization interfaces (e.g., hundreds of time series in a single graph)
- users can apply functions to the data and observe the results immediately applied to the current visualization (“Internet Matlab” analogy)
- configurable automated detection of anomalies and dashboards
3. Trusted collaborative environment

- potentially leveraging IMPACT legal framework and vetting
- users can create **trusted groups**
- **realtime collaboration** (as in Google Docs)
- users can save **personalized** organizations of data, bookmarks to dashboards and live graphs, …
- **open access to public data** creates the opportunity to attract both additional insights into the large pool of data available as well as new users that might join restricted groups or form other collaborations
HYPOTHETICAL EXAMPLE #1

Investigating BGP hijacking

• CAIDA’s BGP hijacking monitoring system identifies a set of potential attacks involving certain ASes

• Farsight’s spam telemetry data shows an increase in spam sent by these ASes

• Visual exploration and correlation of data helps to identify patterns
Discovering a Botnet Scan (sipscan)

- Alert on large increase of (pre-filtered) traffic reaching UCSD’s network telescope towards port UDP 5060

- Analyst sends a request for a Spark query to CAIDA returning set of IP addresses/prefixes/ASes

- Data correlates with Symantec’s malware database allowing us to identify the source as the “Sality” Botnet
13th Oct 2015 - from 5.40pm UTC for about **25 minutes** a large spike in source IPs from all continents

but among top 5 **US providers** we see it coming **only from TWC**!

backscatter from UPnP machines that received spoofed packets to their **UDP port 1900 (UPnP)** originating from UDP port 80

It is unclear why the packets would be spoofed, but it could be an exploitation attempt that injects and runs code on the remote machine

HYPOTHETICAL EXAMPLE #3

Investigating a new massive bug-exploitation
HI³ DEVEL. ROADMAP

Year 1 - Authentication and Authorization System
- ✓ overall design
- ○ backend service
 - OAuth 2.0 *(RFC 6749)*
 - OpenID Connect
- □ add clients to all public-facing components
- □ management interface
- □ define auth policies
HI^3 DEVEL. ROADMAP

Year 2 - Time Series Analytics Engine
- Kafka-based collector
- fault-tolerance
- horizontal scalability
- authentication
- Distributed TS DB
- Big Data analytics query engine
HI³ DEVEL. ROADMAP

Infrastructure-1

OpenStack-based Private Cloud

- ✔ Declarative provisioning
- ✔ VMs for reverse proxy, ssl termination, http cache, web application servers
- ✔ Multiple instances for devel and testing
- ☐ Data analytics engines

OpenStack

- Data Warehousing
- Analytics Engines
- Web Applications & APIs

- Time Series Analytics
- Traffic Flow Analytics
- Other Analytics

- Authentication
- PHP HTTP API
- Javascript Libraries

- Javascript Web App
- CHART HOUSE PHP Libraries
- CHART HOUSE Javascript Libraries

- Users
- Analytics Provider

- IP GEO - LOCATION
- LibIPmeta
- Internet Coordinates
- AS & ORG INFERENCE

- Measurement
- Web Applications & APIs
- Vela
- Henya
- PHP Libraries
- Javascript Web App
- PHP HTTP API
- Javascript Libraries

- IP GEO - LOCATION
- LibIPmeta
- Internet Coordinates
- AS & ORG INFERENCE

- Measurement
- Web Applications & APIs
- Vela
- Henya
- PHP Libraries
- Javascript Web App
- PHP HTTP API
- Javascript Libraries
Infrastructure-2
Data Warehousing Infrastructure
 - Distributed Object Storage (Swift)
 - HTTP API
 - high-throughput (>20Gbps)
 - reliability+scalability
 - large capacity (1.2 PB)
 - SSD Cluster
 - low-latency
 - reliability+scalability
HI³ DEVEL. ROADMAP

Iterative Deployment

☑ proof of concept deployment
 • https://hicube.caida.org

🔴 recruiting data feeds
 • Passive traffic from Network Telescopes
 • Internet outage alerts and raw signals
 • Denial of Service attack data
 • Global Internet routing data

☐ first beta-testers soon
HI³ “POC” DEMO
Investigating a new massive bug-exploitation

- 13th Oct 2015 - from 5.40pm UTC for about **25 minutes** a large spike in source IPs from all continents

- but among top 5 **US providers** we see it coming **only from TWC**!

- backscatter from UPnP machines that received spoofed packets to their **UDP port 1900 (UPnP)** originating from UDP port 80

- It is unclear why the packets would be spoofed, but it could be an exploitation attempt that injects and runs code on the remote machine
UNIQ SRC IP IN TELESCOPE IN OCT 2015

https://hicube.caida.org/@81
WEEK OF OCT 13
ZOOM AROUND OCT 13

https://hicube.caida.org/@i3
ADDED UDP SRC PORT 1900

https://hicube.caida.org/@Khe
ADDED TWC-ONLY TRAFFIC

https://hicube.caida.org/@eT
SUM OF ALL TWC SIBLING AS

Choose a function

- Arithmetic
 - Absolute
 - As Percent
 - Average Series
 - Diff Series
 - Divide Series
 - Divide Series (Arrays)
 - Invert
 - Logarithm
 - Maximum Series
 - Minimum Series
 - Minimum Value
 - Multiply Series
 - Normalize
 - Offset
 - Offset to Zero
 - Power
 - Scale
 - Square Root
 - Sum Series
 - Sum Series (Arrays)
- Calculate
- Combine
- Differential
- Filter
- Generate
- Label
- Sort
- Static
- Statistical
- Time
- Transform

Sum Series

(sumSeries)

Add metrics together and returns the sum at each datapoint.

Arguments (1 [*]):

* Series (timeSeries)
 List of Series (at least 2)
SUM OF ALL TWC SIBLING AS
REMOVING OVERALL AND ADDING COX, COMCAST, AT&T
ADDING COX, COMCAST, AT&T (CLONING AND EDITING METRIC EXPRESSIONS)

https://hicube.caida.org/@Pg
REMOVING OVERALL AND ADDING COX, COMCAST, AT&T

https://hicube.caida.org/@i0
TWC, COX, COMCAST, AT&T: PEAK ONLY IN TIME WARNER CABLE

https://hicube.caida.org/@Pg
TWC, COX, COMCAST, AT&T
(STACKED HORIZON CHARTS)

https://hicube.caida.org/@om
SWITCHING TO WORLD VIEW

https://hicube.caida.org/@om
SWITCHING TO WORLD VIEW

https://hicube.caida.org/@6l
FROM EVERY CONTINENT; NOT MUCH FROM ASIA THOUGH
EXPRESSIONS CAN BE EDITED MANUALLY: ADD * TO SWITCH FROM CONTINENTS TO COUNTRIES

https://hicube.caida.org/@6l
VIEW PER COUNTRY: SHOWS SOME ASIAN COUNTRIES SHOW THE PEAK

https://hicube.caida.org/@8m0
SORTING BY SIMILARITY

https://hicube.caida.org/@7mm
SWITCHING TO GEOMAP VIEW

Logged in as alberto

Pick a time period

October 12, 2015 11:11am UTC - October 14, 2015 5

Geographical Distribution

Specify metrics expression

https://hicube.caida.org/@6l
SWITCHING TO GEOMAP VIEW: ANIMATION SHOWS CHINA IS NOT PARTICIPATING

https://hicube.caida.org/@hr
HI3 BENEFITS

• Enhances our **ability to detect and understand** large-scale incidents
 • *live* streams of data
 • multi-source data is *combined* (same interface, tools, taxonomy, …)
 • dashboards and alert creation/subscription services
 • *collaborative* analyses
 • *crowdsourcing* analysis of public data

• **Extensible**

• **Increases the utility of the data/tools** and enables their in-context-evaluation

• **Lowers the barrier** for
 • stakeholders to provision/consume the data
 • more experts to engage/emerge and play with data
COMPETITION

each, focused on a single class of events

- typically focused on one class of events / one data source type
- don’t allow access to raw data
- don’t allow to “play” w/ the data
- single-user focused
it’s more about complementarity

- **External synergy**
 - DHS IMPACT data providers
 - *in:* can feed HI-CUBE
 - *out:* HI-CUBE generates new raw data requests
 - THREAT/INTELLIGENCE platforms (e.g., ThreatConnect)
 - *in:* previously encoded threats may inspire analyses in HI-CUBE
 - *out:* they would use results from analyses made in HI-CUBE

- **Integration synergy**
 - integration of tools and datasets
THANKS