Predict, Assess, Risk, Identify Disruptive Internet-scale Network Events (PARIDINE)

Kick-off Meeting

April 10, 2018 | Arlington, VA
IODA-NP: Multi-source Realtime Detection of Macroscopic Internet Connectivity Disruption

Alberto Dainotti | CAIDA, UC San Diego

August 24th, 2018
Team Profile

- Center for Applied Internet Data Analysis (CAIDA) @ San Diego Supercomputer Center, University of California San Diego
- PI: Alberto Dainotti, PhD
- CoPI: Marina Fomenkov, PhD
- Alistair King, Rama Padmanabhan, Philipp Winter, Dan Andersen, Paul Hicks, Alex Ma, …
Customer Need

- Timely Detect and Analyze Internet Connectivity Outages
- Focus on: macroscopic events, affecting the network edge
 - E.g., a connectivity black-out significantly affecting customers of a large network operator or a large geographic area
- Context: Cyber attacks, physical attacks, natural disasters, bugs and misconfiguration, government orders, …
- Application: Public Safety, Situational Awareness, Disaster Recovery, Insurance, Internet Reliability & Performance
Approach Overview

- **IODA: Internet Outage Detection & Analysis**
 - Started in 2012 with NSF funding

- **Approach**
 - Combine *active* and *passive* measurements both at the *data plane* and *control plane*
 - Data *aggregation* and event detection per Autonomous System (AS) and Geographic Area
 - Interactive *Visualization*

- **IODA-NP: Next Phase**
 - *(i)* methodological improvements and evaluation based on rigorous definitions, metrics, ground-truth, cross-validation; *(ii)* reporting events; *(iii)* API Framework and Documentation
An eye-candy moment
Approach (Part 1 - Sources)

- Monitoring the Internet with a combination of active and passive approaches both at the data plane and control plane
IBR (Passive – Data Plane)

- Internet Background Radiation (IBR) captured by network telescopes
BGP measurement projects establish peering sessions with ASes to receive their routing tables

- RouteViews (Univ. Oregon): 371 peers
- RIPE RIS (RIPE NCC): 508 peers
- TODO: sources from CAIDA’s BGPStream
Active Probing (Active– Data Plane)

- ICMP Echo requests
- ISI’s Trinocular methodology
 - /24 -based probing and inference
- TODO: Univ. Maryland’s Thunderping methodology
 - Per single IP address inference
Example of Benefit of Multi-Source

Contrasting telescope traffic with BGP measurements revealed a mix of blocking techniques that was not publicized by others.

The second Libyan outage involved overlapping of BGP withdrawals and packet filtering.
Approach (Part 2: Data Aggregation)

- Geography-based Data Aggregation
 - We associate IP addresses, /24 blocks, BGP prefixes with Geographic Coordinates
 - We aggregate post-processed data at Country, State, County level

- AS-level Data Aggregation
 - We associate IP addresses etc. with the operator’s AS Number
 - Prefix-to-AS lookups based on BGP data
Approach (Part 3: Detection)

- For each source type: change point detection on aggregated (i.e., per country, per-state, per-county, per-AS) signals
 - We look for unusual drops
 - Current approach: naïve moving-threshold
 - \textit{TODO}: SARIMA-based detection
 - \textit{TODO}: (per source type) Link the “drop” to a rigorous definition
 - \textit{TODO}: Detection and Alerting based on fusing data sources
Approach (Part 4: Interactive Visual Interfaces)
System Overview

Measurement
- Border Gateway Protocol (BGP) Data-plane packets
 - RIPE NCC
 - NREN 6447
- Internet Background Radiation (data-plane packets)
 - UCSD Network Telescope
- Active Probing (Ping and Traceroute)
 - Archipelago

Data Processing
- BGP STREAM
- CORSARO
 - Ping-based measurements coordination and /24 outage inference (USC/ISI methodology)
- LibTimeSeries
- LibIPmeta
- Prefix-to-AS

Time Series DBs
- WHISPER
- OBATS

Data Transformation
- Measurement Data Processing
- Time Series DBs
- Outage Detection
- Alerts

Web Application
- CHARTHUSE
 - PHP Backend
 - Javascript Frontend

Outage Detection
- Kafka

Alerts
- Severity Score
- Alerts
- Email Users
- Request Traceroutes
Project Activities + Challenges

- **Rigorous definition of targeted event type**
 - E.g., 64k related addresses becoming disconnected for more than 5 minutes
 - Investigate different application requirements and intrinsic constraints

- **IODA’s previous efforts demonstrated the utility of the sources and the approach. However:**
 - Need to bridge per-source IODA detection approach with the targeted definition of outage
 - A rigorous evaluation (accuracy, coverage, …) is missing
 - Current change-point detection generates FP/FNs
 - Need to push to finer geographic granularity (e.g., US counties)
 - E.g., recover filtered out IBR signal, study prefix-geolocation, …
 - Other data sources can be added
 - The infrastructure needs **reliability** and **latency** improvements
Project Activities + Challenges

- Focus on US to provide practical insights
 - Acquire ground truth
 - Investigate weather-induced and power outages
 - Identify limitations of data sources and approaches in terms of address-block and geographic granularity
 - Implement functionalities for US territory and operators

- Develop and document an API Framework

- Reporting events
 - Already started through the CAIDA blog, a Twitter channel, and cooperating with the KeepItOn coalition for politically motivated Internet shutdowns
Benefits

- Near-realtime detection of macroscopic outages
- Multi-source approach improves:
 - Reliability
 - Coverage
 - Understanding
- Visualization Interface make it intuitive
Competition

- Oracle’s Internet Intelligence Map
 - Focus on country-level
 - Limited interaction/viz functionalities in interface
- ISI / John Heidemann’s work
 - IODA uses Trinocular for one data source
 - IODA focuses on per-AS / geographic aggregations
- Akamai
 - State of the Internet reports and some tweets
- Google Transparency report
 - Country-level graphs
- Bgpmon.com
 - BGP only
Contact Info

https://ioda.caida.org
twitter: @caida_ioda

Alberto Dainotti
CAIDA, UC San Diego
alberto@caida.org
858-534-9249
Twitter: @AlbertoDainotti
Predict, Assess, Risk, Identify Disruptive Internet-scale Network Events (PARIDINE) Kick-off Meeting

April 10, 2018 | Arlington, VA