Pushing the Boundaries with **bdrmapIT**: Mapping Router Ownership at Internet Scale

Alexander Marder (University of Pennsylvania) Matthew Luckie (University of Waikato) Amogh Dhamdhere, Bradley Huffaker, kc claffy (CAIDA/UCSD) Jonathan M. Smith (University of Pennsylvania)

Problem: Traceroute is a Mess

Goal

- Accurate maps of the topology discovered by traceroute
 - Determine router operators
 - Identify interdomain links

Motivation

- Resiliency assessment
 - Estimate the number of links between networks
- Internet evolution
 - Is it flattening or retaining the hierarchy
- Internal topology
 - Need to know the borders first
- Fundamental problem for IP-level topology analysis

Previous Work

- bdrmap [Luckie et al. IMC '16]
 - Highly accurate
 - Limited to the border of the traceroute vantage point network
- MAP-IT [Marder et al. IMC '16]
 - Identifies inter-AS links at Internetscale
 - Precise, but lower recall
- Goal is to synthesize them

Measuring Interdomain Congestion

Measuring Interdomain Congestion

Challenges: Neighboring Address Space

• Link addresses come from one AS

Challenges: Neighboring Address Space

• Link addresses come from one AS

Challenges: Neighboring Address Space

• Link addresses come from one AS

Challenges: Unresponsive Routers

Prevent responses past their border

Challenges: Unresponsive Routers

• Prevent responses past their border

• Prevent responses at their border

Challenges: Reallocated Prefixes

• Providers can reallocated prefixes to customers

• Often missing from BGP

bdrmapIT Flowchart

External Data

Phase 1: Construct Graph

Phase 1: Construct Graph

Phase 1: Destination ASes

Phase 1: Last Hop Routers

• Who operates R₁?

• Look for common reason the traceroutes ended at R₁

Include destination ASes

Check AS relationships

• Transit links are typically addresses from provider

• Annotate R₁ with C

Phase 3: Graph Refinement

Annotate Routers: Election

- Most votes win
 - Include subsequent and router interfaces

Network	Votes
ASA	1
AS _B	2

Annotate Routers: Election

- Most votes win
 - Include subsequent and router interfaces

• Annotate R₁ with B

Network	Votes
ASA	1
AS _B	2

Annotate Routers: There's More

- Change votes:
 - 3rd party addresses
 - Reallocated prefixes
- Ignore election outcome
 - Multihomed to a single provider
 - Many neighboring networks

- Special cases
 - IXP addresses
 - Unannounced addresses
- Look for hidden ASes
- Etc.

• Origin AS is the same as the router annotation

• Use election

Routers vote with AS annotation

• 1 vote per interface

Routers vote with AS annotation

• 1 vote per interface

• Annotate b₁ with A

Multiple Iterations

• Repeat annotating routers and interfaces until repeated state

Improves annotations

1st Iteration: Annotate Routers

1st Iteration: Annotate Routers

• Annotate with **B** expecting link to come from **A**'s address space

1st Iteration: Annotate Interfaces

• A wins the election

2nd Iteration: Annotate Routers

Change annotation to A

Network	Votes
ASA	2
AS _B	0

Validation

Validated against ground truth from 4 networks
Tier 1, Large Access, and two large R&E networks

- Three experiments
 - Single network from single vantage point
 - Internet-wide traceroute dataset with no vantage point in validation networks
 - Reduce number of vantage points

Experiment 1: Single Vantage Point, Single Network

Single In-Network VP

Experiment 2: Internet-Wide Traceroutes

Experiment 3: Reducing the Number of VPs

Conclusion

bdrmapIT infers router operators and interdomain links

• Synthesis of bdrmap and MAP-IT

Validated against ground truth

- Future work
 - IPv6
 - Traceroute strategy