IPv4

IPv6

As a previous year, the IPv6 graph exhibits faster relative growth than the IPv4 graph. From January 2015 to January 2016, the number of IPv6 ASes increased by 25% and the number of links connecting these ASes increased by 30%. This growth is accompanied by an increase in the number of IPv6 prefixes. Specifically, the number of globally routed IPv6 prefixes increased by 7% and the number of interconnections increased by 16%. While these growth rates are close, the IPv6 graph is still far smaller. In 2015, the IPv6 graph grew over 5,500 ASes since 2014; the IPv4 graph grew over 3,500 ASes since 2014.

The three highest degree (non-connected) IPv4 and IPv6 ASes in our measurements remained in the same position as in 2014, both ASes had a larger relative increase than 3 in 2014. The fraction of ASes that increased in size tended to be more varied than 2014, with over 35% of ASes increasing their degree, while 15% of ASes decreased their degree by 2015.

Figure 1 (Left) and 5 (Right). (Box-and-Whisker Plot IPv4) For ASes with degree less than 5, the same number of ASes increased and decreased their degree by 2015. The fraction of ASes that increased in size tended to be more varied than 2014, with over 35% of ASes increasing their degree, while 15% of ASes decreased their degree by 2015.
During a two-week period in January 2015, CAIDA researchers connected to 150W, a company that operates a global network of ASes. The data collected was used to analyze the growth and evolution of the Internet. The analysis focused on IPv4 and IPv6 address space utilization, with a particular emphasis on the degree of connectivity (number of connections) among ASes.

The study found that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.

The researchers also noted that the fraction of ASes that increased in size tended to be higher for IPv6 compared to IPv4. This suggests that the IPv6 Internet is growing at a faster rate than IPv4, which is consistent with previous findings. The data collected from 2015 was used to analyze the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes.

The analysis also highlighted the importance of considering the growth and evolution of the Internet, with a particular emphasis on the degree of connectivity among ASes. The results showed that the IPv4 Internet grew at a faster rate than IPv6, with a degree of connectivity of approximately 30% for IPv4 and 20% for IPv6. The results showed that 10% of ASes increased their degree by 55% in 2015, with a median increase of 26%. The highest ranked AS by degree in 2015 was ranked in the “Top 10” by transit degree in either 2014 or 2015. In the IPv6 graph, 10 out of 11 ASes increased their degree, with a median increase of 26%. The degree growth of IPv6 was observed to be faster than IPv4, which had a marginal impact on the Top 10 rankings.