

 	
 Resource Catalog
 Datasets
 Media / Presentations
 Papers
 Recipes
 Software / Tools

	
 About
 Supporting
 Donate
 Sponsors
 Jobs at CAIDA
 Annual Reports
 Program Plan
 Legal Agreements
 Single Sign-On
 Staff
 Blog
 Contact Us

	
 Workshops

	
 Projects

	
 Funding

 Scamper

 CatalogResource Catalog Toggle Dropdown

 Datasets

 Overview table

 Media / Presentations

 Posters
 Visualizations

 Papers

 External papers
 Report new publication

 Recipes

 Software / Tools

 AboutAbout Toggle Dropdown

 Supporting

 Donate

 Sponsors

 Jobs at CAIDA

 Annual Reports

 Program Plan

 Legal Agreements

 Single Sign-On

 Staff

 Blog

 Contact Us

 Workshops Toggle Dropdown

 GMI Meetings
 AIMS 2023
 DUST 2021
 WOMBIR-2
 WOMBIR-1
 WIE 2020

 Projects Toggle Dropdown

 AVOID
 GMI
 Spoofer
 Cloudtrace
 FANTAIL
 Network Telescope
 AS Core Visualization
 Ark

 Funding Toggle Dropdown

 AVOID-5G
 RABBITS
 STARNOVA
 Cloud Bottlenecks
 QUINCE-NG
 MSRI-GMI3S
 ILANDS

 Search

	CAIDA

	Catalog

	Scamper

 On this page

 Scamper

 Like its predecessor
skitter,
scamper is a feature-rich tool that actively probes the Internet in
order to analyze topology and performance.
Scamper supports both IPv6 and IPv4 probing, the well-known
ping and traceroute techniques, as well as MDA traceroute,
Radargun, Ally, Mercator, Sting, Speedtrap, DNS probes, UDP probes,
HTTP, parts of tbit, and two measurement primitives to support MIDAR.
Scamper is the prober deployed in CAIDA's
Macroscopic Topology Project.
Scamper's developer is Matthew Luckie.

Overview

 The architecture of scamper. Measurement tasks are supplied from one or more input sources, including from an input file, from the command line, or from a control socket.
 (Scamper paper)

Scamper is designed to actively probe destinations in the Internet in
parallel (at a specified packets-per-second rate) so that bulk data
can be collected in a timely fashion. Scamper’s native output file
format is called warts: a warts file contains
substantial meta data surrounding each individual measurement
conducted, as well as substantial detail of responses received. The
measurements conducted can range from simple to complex. An example of
a simple measurement is where a single measurement method
(e.g. traceroute) is used on a list of IP addresses to conduct a bulk
measurement.
A more complex measurement might be where the outcome of a previous
test influences what happens next: for example, for each hop in a
traceroute path, infer the address of the outgoing interface for the
previous hop. Complex measurements are conducted by connecting to a
running scamper process with a driver program which contains the
logic. The driver program can use the Python API provided by the
scamper python module, or the low-level C APIs provided by
libscamperctrl and
libscamperfile.

Scamper Availability

	The current snapshot of scamper’s source code is cvs-20240229, released February 29th 2024.
	All releases of scamper are licensed under the GPL v2.
	Scamper is available in
FreeBSD ports,
OpenBSD ports,
an Ubuntu PPA,
a Brew formula,
an openSUSE package,
NetBSD pkgsrc,
Macports,
and Debian/Ubuntu packages.
The FreeBSD, OpenBSD, Ubuntu PPA, and openSUSE packages should be up to date with the latest version of scamper.
	To use the Ubuntu PPA, add the PPA to your system as described in the
PPA documentation.
The PPA provides different scamper components in different packages, named as follows:
scamper, python3-scamper, scamper-utils, scamper-remoted,
scamper-hoiho, libscamperfile8, libscamperfile8-dev,
libscamperctrl2, and libscamperctrl2-dev.

Building Scamper

	
We recommend that you use one of the available packages listed
above, where possible.

	
Scamper should compile and run under FreeBSD, OpenBSD, NetBSD,
Linux, MacOS X, Solaris, Windows, and DragonFly. Not all of scamper
will run on all systems: for example, the sting and tbit modules
require IPFW or PF. To build scamper:

./configure

make

make install

	
The scamper source distribution includes many optional features that
can be controlled at build time. You can obtain an overview of these
optional features by reviewing the output of ./configure --help.

	
The Python interface requires Python 3 to build.
Depending on your compilation environment, you might need to
provide the path to a Python binary to the configure
script, using something similar to
PYTHON=/path/to/python3 ./configure --with-python.

	
To build sc_hoiho, pass --enable-sc_hoiho
and one of --with-pcre or --with-pcre2 to configure.
You might need to pass the path to the pcre headers and library via
CFLAGS and LDFLAGS if these are not in a location that the compiler
will consider by default.

	
To build sc_uptime, pass
--enable-sc_uptime to configure, and ensure that the sqlite3
headers and library are in a location that the compiler will
consider, via CFLAGS and LDFLAGS.

	
You can also disable measurement primitives in the compiled
scamper binary (but not
libscamperfile) by using
--disable-scamper-foo, where foo is the name of a scamper
measurement primitive to disable.

Usage

usage: scamper [-?Dv] [-c command] [-p pps] [-w window]
 [-M monitorname] [-l listname] [-L listid] [-C cycleid]
 [-o outfile] [-O options] [-F firewall] [-e pidfile]
 [-n nameserver]
 [-d debugfile]
 [-i IPs | -I cmds | -f file | -P [ip:]port | -R name:port |
 -U unix-dom]
 -? give an overview of the usage of scamper
 -c command string (default: trace)
 -C cycle id
 -d write debugging information to the specified file
 -D start as a daemon listening for commands on a port
 -e write process ID to specified file
 -f list of files provided on the command line
 -F use the system firewall to install rules as necessary
 -i list of IP addresses provided on the command line
 -I list of scamper commands provided on the command line
 -l name to assign to default list
 -L list id for default list
 -M specify the canonical name of the monitor
 -o specify the file to write output to
 -O specify options to use:
 text: output results in plain text for interactive use
 warts: output results in warts format for science
 warts.gz: output results in gzipped warts format
 warts.bz2: output results in bzip2 warts format
 warts.xz: output results in xz warts format
 cmdfile: input file specifies whole commands
 json: output results in json format, better to use warts
 planetlab: necessary to use safe raw sockets on planetlab
 noinitndc: do not initialise neighbour discovery cache
 outcopy: output copy of all results collected to file
 rawtcp: use raw socket to send IPv4 TCP probes
 icmp-rxerr: use recverr cmsg to receive ICMP responses
 notls: do not use TLS anywhere in scamper
 notls-remote: do not use TLS on remote control sockets
 cafile=file: use the CA certs in file for remote auth
 client-certfile=file: use cert in file for remote auth
 client-privfile=file: use privkey in file for remote auth
 select: use select(2)
 poll: use poll(2)
 epoll: use epoll(7)
 kqueue: use kqueue(2)
 debugfileappend: append to debugfile, rather than truncate
 ring: use PACKET_RX_RING to receive datalink packets
 -p number of packets per second to send (1 <= pps <= 10000)
 -P [ip:]port for control socket, default to loopback
 -R name and port of remote host to receive commands from
 -U name of control socket in the file system
 -v output the version of scamper this binary is
 -w limit the window of actively probing tasks

Documentation

The paper Scamper: a Scalable and Extensible Packet Prober for Active Measurement of the Internet describes scamper’s motivation and architecture. The cite for the paper is:

M. Luckie. Scamper: a Scalable and Extensible Packet Prober for Active Measurement of the Internet.

Proceedings of the 10th ACM SIGCOMM conference on Internet measurement (IMC), Melbourne, Australia, 1-3 Nov 2010, p. 239-245.

The Python module is documented in web pages provided on
the CAIDA website, found in the scamper python module documentation.

Most of scamper, and its associated libraries and utilities, is
documented in man pages included in the source code package. PDF files
of these man pages are:

	scamper: main data collection program.
	sc_ally: driver for Ally implementation.
	sc_analysis_dump: convert scamper traces to something easily parsed.
	sc_attach: connect to scamper daemon and execute series of commands, collecting the results in a warts file.
	sc_bdrmap: driver to map first hop border routers of networks.
	sc_erosprober: driver to periodically probe addresses and rotate output files.
	sc_filterpolicy: driver to test systems for congruent filtering policy.
	sc_hoiho: holistic orthography of Internet hostname observations.
	sc_ipiddump: dump IP-ID values embedded in ping and dealias objects in warts files.
	sc_pinger: driver to run ping with different probe methods on a list of addresses.
	sc_prefixprober: driver to probe addresses in specified prefixes.
	sc_prefixscan: driver to test if a set of IPv4 links are point-to-point.
	sc_radargun: driver to run radargun on a list of candidate aliases.
	sc_remoted: interact with a collection of remotely controlled scamper instances.
	sc_speedtrap: driver to resolve aliases for a set of IPv6 interfaces.
	sc_tbitblind: driver to test systems for resilience to blind TCP attacks.
	sc_tbitpmtud: driver to test systems for responsiveness to ICMP packet too big messages.
	sc_tracediff: display traceroute paths that have changed.
	sc_ttlexp: dump source addresses from ICMP TTL expired messages in warts files.
	sc_uptime: driver to infer reboot windows for systems with IPv6 addresses.
	sc_warts2csv: dump traceroutes collected by scamper in csv format.
	sc_warts2json: print a JSON object representing each warts object in a file.
	sc_warts2pcap: generate pcap files from tbit and sting data.
	sc_warts2text: generate simple text for human parsing.
	sc_wartscat: concatenate warts files.
	sc_wartsdump: detailed dump of scamper data that was collected in warts format.
	sc_wartsfilter: select specific records from a warts file.
	sc_wartsfix: truncate damaged warts files.
	libscamperctrl: a library to execute measurements on a set of scamper instances.
	libscamperfile: a library to read and write warts files, as well as read CAIDA’s ARTS files.
	warts: documentation on the internal format of a warts file.

Release Announcements

If you would like to receive notifications of future releases of scamper, you may subscribe to the receive only mailing list scamper-announce by filling out the scamper-announce mailman form.

Network Research

Here is a list of research done by the author using scamper.

	On the Latency Impact of Remote Peering

F. Mazzola, P. Marcos, I. Castro, M. Luckie, and M. Barcellos

Proceedings of the 23rd Passive and Active Measurement (PAM) Conference, March 2022.
	Learning Regexes to Extract Router Names from Hostnames

M. Luckie, A. Marder, B. Huffaker, and k. claffy

Proceedings of the Asian Internet Engineering Conference (AINTEC), December 2021.
	Learning to Extract Geographic Information from Internet Router Hostnames

M. Luckie, B. Huffaker, A. Marder, Z. Bischof, M. Fletcher, and k. claffy

Proceedings of the 17th ACM Conference on emerging Networking EXperiments and Technologies (CoNEXT), December 2021.
	Inferring Regional Access Network Topologies: Methods and Applications

Z. Zhang, A. Marder, R. Mok, B. Huffaker, M Luckie, k. claffy, and A. Schulman

Proceedings of the 21st ACM Internet measurement Conference (IMC), November 2021.
	Learning to Extract and Use ASNs in Hostnames

M. Luckie, A. Marder, M. Fletcher, B. Huffaker, and k. claffy

Proceedings of the 20th ACM Internet measurement Conference (IMC), October 2020.
	Learning to Extract Router Names from Hostnames

M. Luckie, B. Huffaker, and k. claffy

Proceedings of the 19th ACM Internet measurement Conference (IMC), October 2019.
	The Impact of Router Outages on the AS-level Internet

M. Luckie and R. Beverly

Proceedings of ACM SIGCOMM, August 2017
	bdrmap: Inference of Borders Between IP Networks

M. Luckie, A. Dhamdhere, B. Huffaker, D. Clark, and k. claffy

Proceedings of the 16th ACM SIGCOMM conference on Internet Measurement (IMC), November 2016.
	Don’t Forget to Lock the Back Door! A Characterization of IPv6 Network Security Policy

J. Czyz, M. Luckie, M. Allman, M. Bailey

Proceedings of Network and Distributed Systems Security (NDSS) Conference, February 2016.
	Resilience of Deployed TCP to Blind Attacks

M. Luckie, R. Beverly, T. Wu, M. Allman, k claffy

Proceedings of the 15th ACM SIGCOMM conference on Internet measurement (IMC), October 2015.
	Measuring and Characterizing IPv6 Router Availability

R. Beverly, M. Luckie, L. Mosley, k claffy

Proceedings of the 16th Passive and Active Measurement (PAM 2015) Conference, New York, March 2015.
	Challenges in Inferring Internet Interdomain Congestion

M. Luckie, A. Dhamdhere, D. Clark, B. Huffaker, k claffy

Proceedings of the 14th ACM SIGCOMM conference on Internet measurement (IMC), November 2014.
	Speedtrap: Internet-scale IPv6 Alias Resolution

M. Luckie, R. Beverly, W. Brinkmeyer, and k claffy

Proceedings of the 13th ACM SIGCOMM Internet Measurement Conference (IMC), October 2013.
	Measuring the Deployment of IPv6: Topology, Routing and Performance

A. Dhamdhere, M. Luckie, B. Huffaker, k.c. claffy, A. Elmokashfi, E. Aben

Proceedings of the 12th ACM SIGCOMM Internet Measurement Conference (IMC), November 2012.
	Revealing MPLS tunnels obscured from traceroute

B. Donnet, M. Luckie, P. Merindol, J-J Pansiot

ACM SIGCOMM Computer Communication Review, 42 (2), pp. 87-93, April 2012.
	Measured Impact of Crooked Traceroute

M. Luckie, A. Dhamdhere, k.c. claffy, D. Murrell

ACM SIGCOMM Computer Communication Review, 41 (1), pp. 14-21, January 2011.
	Measuring Path MTU Discovery Behaviour

M. Luckie and B. Stasiewicz

Proceedings of the 10th ACM SIGCOMM Internet Measurement Conference (IMC), Melbourne, Australia, pp. 102-108, November 2010
	Traceroute probe method and forward IP path inference

M. Luckie, Y. Hyun, and B. Huffaker

Proceedings of the 8th ACM SIGCOMM Internet Measurement Conference (IMC), Vouliagmeni, Greece, pp. 311-324, October 2008
	Inferring and Debugging Path MTU Discovery Failures

M. Luckie, K. Cho, and B. Owens

Proceedings of the 5th ACM SIGCOMM Internet Measurement Conference (IMC), pp. 193-198, October 2005
	Identifying IPv6 Network Problems in the Dual-Stack World

K. Cho, M. Luckie, and B. Huffaker

Proceedings of ACM/SIGCOMM Network Troubleshooting Workshop 2004, pp. 283-288, August 2004

Bonus Material

	A library written by Young Hyun at CAIDA for reading warts files with Ruby is available at RubyForge.
	Robert Beverly (NPS) wrote native Python implementations of sc_attach and sc_wartsdump without any scamper dependencies. His code is available at CMAND’s GitHub.
	Baptiste Jonglez wrote a native Python warts library for traceroute and ping records, also without any scamper dependencies. His code is available at the Drakkar group’s GitHub.
	Ovidiu Dan wrote a C# library for parsing traceroute output stored in warts files. His code is available on GitHub.

Acknowledgments

 The development of scamper was funded by the WIDE Project in association with CAIDA for the 12 month period ending April 2005.

Related Objects

 See https://catalog.caida.org/software/scamper/ to explore related objects to this document in the CAIDA Resource Catalog.

Go to Resource Catalog entry

 Published
 April 9, 2004

 Last Modified February 29, 2024

 	Center for Applied Internet Data Analysis based at the University of California's San Diego Supercomputer Center

 Privacy

