Timing Verification as a Service

Darryl Veitch darryl.veitch@uts.edu.au

> School of Electrical and Data Engineering UNIVERSITY OF TECHNOLOGY SYDNEY

Timing Data is Different

Ubiquitous

• timestamps a part of almost all measurement

Universal

- only a small number of key `types'
- each with the same generic concerns :
 - are my timestamps reliable?
 - how accurate are they?

Suggests potential for broad solutions

- i) fix the timing system
- [watch this space]
- ii) evaluate/verify/certify
 - the timing system
 - the timestamps

achievable by a service?

What Could Possibly Go Wrong?

Timing Purposes -> Timing `Data Types'

Event ordering

- monotonicity wrt true time (TAI)
- uniqueness

Time interval duration

- same clock: running at stable, correct rate
- different clocks: absolute time up to a constant

Absolute time

- globally comparable metric and label
- synchronization to universal standard (TAI, UTC)

Different Clocks for Each Time Type

- Causal Clock (Event ordering)
 - hardware counter, or message passing logic
 - Expect: perfection
- Difference Clock (Time interval duration)
 - local hardware counter
 - timestamp exchange to remote reference
 - smart calibration
 - Expect: very robust, very accurate
- Absolute Clock (Absolute time)
 - stable local hardware counter
 - frequent exchange with remote reference
 - very smart calibration
 - Expect: vulnerability, much less accurate

Timing Hierarchy (in an ideal current world)

Verification Dimensions

System components

- Internet timing system
- remote server side
- client side {hardware, clock, timestamping, final timestamps}

Timeliness

- general certification
- on-demand auditing
- ongoing monitoring
- detailed audit during experiment

Auditing body

- independent 3rd party (free or not)
- available software
- built into timing system

Verification approach

- remote
- with server and/or client cooperation

Clock Type

Eg 1: Server Health Monitoring (SHM)

System components

- Internet timing system
- remote server side
- client side {hardware, clock, timestamping, final timestamps}

Timeliness

- general certification
- on-demand auditing
- ongoing monitoring
- detailed audit during experiment

Auditing body

- independent 3rd party (free or not)
- available software
- built into timing system

Verification approach

- remote
- with server and/or client cooperation

Clock Type

Don't Use that Server !

No RTT `events':

- → no routing changes
- → no major congestion
- \rightarrow R(i) should bound A(i)

Large Asym events:

- → can't be routing
- → can't be congestion
- → must be server

Longitudinal study (2011,2015) Out of 102 servers, 37 bad over entire period !

► Eg 2: Client clock vetting for RTT/IAT

System components

- Internet timing system
- remote server side
- client side {hardware, clock, timestamping, final timestamps}

Timeliness

- general certification
- on-demand auditing
- ongoing monitoring
- detailed audit during experiment

Auditing body

- independent 3rd party (free or not)
- available software
- built into timing system

Verification approach

- remote
- with server and/or client cooperation

Clock Type

Eg 3: Clock Outsourcing

System components

- Internet timing system
- remote server side
- client side {hardware, clock, timestamping, final timestamps}

Timeliness

- general certification
- on-demand auditing
- ongoing monitoring
- detailed audit during experiment

Auditing body

- independent 3rd party (free or not)
- available software
- built into timing system

Verification approach

- remote
- with server and/or client cooperation

Clock Type

Eg 4: Network Timing Core

System components

- Internet timing system
- remote server side
- client side {hardware, clock, timestamping, final timestamps}

Timeliness

- general certification
- on-demand auditing
- ongoing monitoring
- detailed audit during experiment

Auditing body

- independent 3rd party (free or not)
- available software
- built into timing system

Verification approach

- remote
- with server and/or client cooperation

Clock Type

► NTP Forest, with Tree-rot

How would we know our tree is rotten? No tools!

Meshed Stratum-1 + Privileged Stratum-2

- Timing isn't going away
- Timing underpins other measurement
- Timing has problems, but they are finite
- Many can be fixed via expertise wrapped in a service
- Let's just do it

