Deploying MDA Traceroute on RIPE Atlas Probes

Kevin Vermeulen ${ }^{1}$, Stephen Strowes ${ }^{2}$, Timur Friedman ${ }^{1}$ ${ }^{1}$ Sorbonne University, ${ }^{2}$ RIPE NCC

Summary

- Multipath Detection Algorithm (MDA) and its limits
- Towards a better MDA:
- Survey on load balancers
- Provide heuristics based on data
- Results

Multipath Detection Algorithm: Definition

- Allows to discover all the paths between a source and a destination, based on paris-traceroute
- Statistical guarantees on the discovered topology
- Potentially sends tens of thousands of packets to discover all the topology
- Makes the worst case hypothesis that every discovered interface could be part of a load balancer

Survey (work in progress)

- 350,000 traceroutes towards destinations from IMPACT IP Hitlist
- Work divided among 35 PlanetLab nodes as sources
- 100,000 traceroutes computed at the moment (computing still in progress)
- 40% of the traceroutes contained at least one diamond

Survey: diamond lengths

Survey: diamond widths

Survey: width asymmetry

Survey: meshed diamonds

- 15.3 \% are meshed diamond
- More meshing metrics are being defined in our ongoing work

The MDA uses 8500 packets to discover this topology! Source : ple2.planet-lab.eu
Destination: 125.155.82.17

MDA overhead: packets sent

- hop 1: one node discovered
- Is there a second node?
- Send n2 = 8 packets to hop 1
- No more nodes found
- hop 2: six nodes discovered
- Is there a seventh node?
- Send n7 = 43 packets
- No more nodes found
- hop 3: each hop 2 node is a potential branching point!
- Must find $\mathrm{n} 2=8$ flows that go to each hop 2 interface
- Send all $6 \times 8=48$ packets to hop 3
- Only 1 node found
- Can we do better?

Measured topology

Ground truth

Towards a better MDA

- hop 1 : n2 = 8
- hop $2: n 7=43$
- hop $3: n 2=8$
- Assumption: equal probability to reach any of the interfaces at hop 3
- We make this assumption because our survey reveals that most diamonds are symmetric

Measured topology

Ground truth

Towards a better MDA

- For each combination of these characterictics: symmetry, asymmetry, meshed, not meshed
-> We provide heuristics to save probes

New vs Classic MDA on a length 1 diamond

40% of packets are needed to discover all the vertices

60\% of packets are needed to discover all the edges

New vs Classic MDA on a longer symmetric diamond

50% of packets are needed to discover all the vertices

60\% of packets are needed to discover all the edges

New vs Classic MDA on a meshed diamond

20% of packets are needed to discover all the vertices

60% of packets are needed to discover all the edges

New vs Classic MDA on an asymmetric diamond

40% of packets are needed to discover all the vertices

Asymmetric diamond edges

80% of packets are needed to discover all the edges

References

- ${ }^{1}$ https://paris-traceroute.net/images/infocom2009.pdf
- ${ }^{2 h t t p s: / / a n t . i s i . e d u / d a t a s e t s / a l l . h t m l ~}$
- 3 http://mat.uab.cat/matmat/PDFv2014/v2014n02.pdf

Questions?

