
Modeling Persistent Congestion for Tail 
Drop Queue

Alex Marder & Jonathan M. Smith
University of Pennsylvania



Problem

•Can we determine the severity of persistent congestion?
•100mbit >> 1mbit

•Why?
•How bad is interdomain congestion?
• Is service degraded due to DDoS attack?

•What about TCP?



Can We Use TCP?

•Requires host on both sides of the link

•Measures end-to-end throughput
•Can be difficult to determine the bottleneck

• Smaller RTT gets more throughput



Goals

•Use edge probing to determine the average per flow 
throughput of TCP flows on persistently congested links



Controlled Experiments: Setup



Controlled Experiments

•Use TCP flows to adjust per-flow throughput
•100 flows ≈ 10mbit, 1000 flows ≈ 1mbit

• Flows last [1, 5] seconds
• Immediately replaced by new flow

•1000 probes per measurement
•100ms intervals



FIFO Tail Drop Queue

• Queue depth: maximum number 
of packets in queue
• If Arrival Rate > Link Bandwidth
• Queue size increases

• If Arrival Rate < Link Bandwidth
• Queue size decreases

• Packets are dropped when queue 
is full



TCP Variants

NewReno
• Additive Increase, Multiplicative 

Decrease
• Slow Start
• Fast Retransmit
• Fast Recovery with partial ACKs

CUBIC
• Slow Start, Fast Retransmit, Fast 

Recovery
• Congestion Window increases follow a 

cubic function – quickly initially, but 
slows as it nears old window size
• Partially decouples window increases 

from RTT
• Default in current versions of Linux, 

MacOS, and Windows



Initial Setup



TCP CUBIC: Mean Probe RTT Increases and Spread 
Decreases as Per Flow Throughput Decreases



TCP CUBIC: 100mbit (10 Flows) – 1mbit (1000 Flows)



TCP CUBIC: 10mbit (100 Flows) – 1mbit (1000 Flows)



CUBIC vs NewReno: Mean and Spread are Different



CUBIC vs NewReno: Model for CUBIC is Unusable for 
NewReno



CUBIC vs NewReno: 1000 Probe RTTs Every 100ms



CUBIC vs NewReno: 1000 Probe RTTs Every 100ms



CUBIC vs NewReno: Probe RTTs Increase Slower Than 
Decrease



Percent Increasing Metric

•Percentage of Probe RTTs where RTTi > RTTi-1

•Attempt to capture rate of queue increases vs decreases

• Example:
•10 RTTs = [44, 46, 48, 43, 45, 44, 47, 42, 45, 48]
•6 RTTs are greater than previous RTT
•Percent Increasing = 60%



CUBIC vs NewReno: Percent Increasing Metric 
Reduces Potential Estimation Error (≈ 2Mbit)



CUBIC & NewReno Mixes: All Fall Between CUBIC and 
NewReno Curves



Bandwidth: Reduce Bandwidth to 500Mbit



Bandwidth: Measuring Raw Average Throughput



Measurements Are Independent of the Number of 
TCP Flows



Queue Depth: Increase By 4ms (From 48ms to 52ms)



Queue Depth: Stdev and % Increasing Are Resilient to 
Small Differences, Mean is Not



TCP RTT: Impact of Different RTTs



TCP RTT: Percent Increasing Estimation Error Based 
on RTT Assumption



TCP RTT: Probe RTTs Measure Throughput of Smallest 
TCP RTT Flows



Probing Through Congestion



1st Link: Reverse Path Congestion



2nd Link: Forward Path Congestion



Probing Through Congestion



Probing Through Congestion: Looks Possible



Conclusions & Future Work

•Where it works:
•CUBIC, NewReno, mixed
•Bandwidth
•Queue depth
•Assumed TCP RTT 

distribution

•Hopefully soon:
•Reduce error due to TCP 

RTT
•Probing through congestion

•New experiments:
•BBR
•Higher bandwidths (10+ 

Gbit)
• Throughput fluctuations


