

Censored Planet: Measuring Internet Censorship Globally and Continuously

Roya Ensafi AIMS 2018

Measuring Internet Censorship Globally

PROBLEM:

- How can we detect whether pairs of hosts around the world can talk to each other?

Measuring Internet Censorship Globally

PROBLEM:

- How can we detect whether pairs of hosts around the world can talk to each other?

STATE OF THE ART:

- Deploy hardware or software at hosts (RIPE Atlas, OONI probe)
- Ask people on the ground, or use VPNs, or research networks (PlanetLab)

THREE KEY CHALLENGES:

Coverage, ethics, and continuity

Thinking Like an "Attacker"...

140 million public live IPv4 addresses

These machines blindly follow Internet protocol rules such as TCP/IP.

How can we leverage standard protocol behaviors to detect whether two distant hosts can communicate?

Measuring Internet Censorship Globally... Remotely!

PROBLEM:

- How can we detect whether pairs of hosts around the world can talk to each other?

...from somewhere else in the world?

Spooky Scan uses TCP/IP side channels to detect whether a user and a site can communicate (and in which direction packets are blocked)

Goal: Detect blocking from off-path

- * TCP Idle Scan Antirez, (Bugtraq 1998)
- * Detecting Intentional Packet Drops on the Internet via TCP/IP Side Channels Roya Ensafi, Knockel, Alexander, and Crandall (PAM '14)
- * Idle Port Scanning and Non-interference Analysis of Network Protocol Stacks Using Model Checking

Roya Ensafi, Park, Kapur, and Crandall (Usenix Security 2010)

Augur

Augur is a follow up system that uses the same TCP/IP side channels to detect blocking from off-path.

Goal: Scalable, ethical, and statistically robust system to continuously detect blocking.

* Augur: Internet-Wide Detection of Connectivity Disruption P. Pearce*, R. Ensafi*, F. Li, N. Feamster, V. Paxson (* joint first authors)

TCP/IP

Spooky Scan Requirements

"User" (Reflector)

Must maintain a <u>global</u> value for IP ID

Measurement Machine

Must be able to spoof packets

Measurement machine

Site-to-Reflector Blocked

Reflector-to-Site Blocked

Reflector-to-Site Blocked

Site-to-Reflector Blocked

> Δ IP ID1 = 1 Δ IP ID2 = 1

No Direction Blocked

> Δ IP ID1 = 2 Δ IP ID2 = 1

Reflector-to-Site Blocked

> Δ IP ID1 = 2 Δ IP ID2 = 2

Coping with Reflector IP ID Noise

Amplifying the signal

Effect of sending *N* spoofed SYNs:

Site-to-Reflector Blocked	No Direction Blocked	Reflector-to-Site Blocked
Δ IP ID1 = (1 + noise)	Δ IP ID1 = (1 + N + noise)	Δ IP ID1 = (1 + N + noise)
Δ IP ID2 = noise	Δ IP ID2 = noise	Δ IP ID2 = (1 + N + noise)

Reflector

Coping with Reflector IP ID Noise

Amplifying the signal

Effect of sending *N* spoofed SYNs:

Site-to-Reflector Blocked	No Direction Blocked	Reflector-to-Site Blocked
Δ IP ID1 = (1 + noise)	Δ IP ID1 = (1 + N + noise)	Δ IP ID1 = (1 + N + noise)
Δ IP ID2 = noise	Δ IP ID2 = noise	Δ IP ID2 = (1 + N + noise)

Repeating the experiment

To eliminate the effects of packet loss, sudden bursts of packets, ...

Reflecto

Augur for Continuous Scanning

Insight: Some measurements much noisier than others.

Augur for Continuous Scanning

Insight: Some measurements much noisier than others.

Augur for Continuous Scanning

Insight: Some measurements much noisier than others.

```
Probing Methodology:

Until we have high enough confidence (or up to):

- For first 4s, query IPID every sec

- Send 10 spoofed SYNs

Query IPID

- Query IPID
```

Repeat runs and use Seq. Hypothesis Testing to gradually build confidence.

Augur: Sequential Hypothesis Testing

Defining a random variable:

°в

$$Y_n(S_i, R_j) = \begin{cases} 1 & \text{if no IPID acceleration occurs} \\ 0 & \text{if IPID acceleration occurs} \end{cases}$$

Augur: Sequential Hypothesis Testing

Defining a random variable:

$$Y_n(S_i, R_j) = \begin{cases} 1 & \text{if no IPID acceleration occurs} \\ 0 & \text{if IPID acceleration occurs} \end{cases}$$

Calculate known outcome probabilities (priors):

Prior 1: Prob. of no IPID acceleration when there is blocking **Prior 2**: Prob. of IPID acceleration when there is no blocking

Augur: Sequential Hypothesis Testing

Coverage

Challenge: Need global vantage points from which to measure

Scanning IPv4 on port 80:

- 22.7 million potential reflectors!
- Compare: 10,000 in prior work (RIPE Atlas)

THREE KEY CHALLENGES:

Coverage, ethics, and continuity

Ethics

Challenge: Probing banned sites from users' machines creates risk

Ethics

Challenge: Probing banned sites from users' machines creates risk Use only **infrastructure devices** to source probes

THREE KEY CHALLENGES:

Coverage, ethics, and continuity

Global IP ID	22.7 million	236 countries (and dependent territories)
Two hops back from end user	<u>53,000</u>	180 countries

Continuity

Challenge: Need to repeat measurements over time

Augur doesn't depend on end users' availability, and routers have less downtime, allowing us to collect measurements continuously.

Running <mark>Augur</mark> In the Wild

Reflectors: 2,050 Sites: 2,134 (Citizen Lab list + Alexa Top-10K) Mix of sensitive and popular sites Duration: 17 days Measurements per reflector-site: 47 Overall # of measurements: 207.6 million

Top Blocked Sites

Site-to-Reflector Blocked

Site-to-Reflector blocking

Site	% Refs	% Cnt.	Class
hrcr.org	41.7	83.0	Human Rights
alstrangers.[LJ].com	37.9	78.8	Militants
varlamov.ru	37.7	78.0	Foreign relations
nordrus-norna.[LJ].com			Hate speech
www.stratcom.mil	37.5	78.6	Foreign relations
www.demonoid.me	21.7	58.5	P2P file sharing
amateurpages.com	21.2	57.9	Adult contents
voice.yahoo.jajah.com			Voice over IP
amtrak.com			ALEXA

Interesting example:

No.

1. 2. 3.

4. 5.

6.

 amtrak.com was blocked for 21% of reflectors, 57% of countries (ranked 6) → Collateral damage

Top Blocked Sites

Reflector-to-site Blocked

Reflector-to-site blocking

No.	Site	% Refs	% Cnt.	Class
1.	nsa.gov	7.4	23.3	US Gov.
2.	scientology.org	2.2	6.9	Minority faiths
3.	goarch.org	1.9	4.4	Minority faiths
4.	yandex.ru	1.8	3.8	Freedom of Expression
5.	hushmail.com	1.8	4.4	Free email
6.	carnegieendowment.org	1.6	4.4	Political reforms

Interesting example:

 nsa.gov was blocked for 7.4% of reflectors, 23% of countries (ranked 1)

 Note: Some servers discriminate by providing their services to specific regions
 Examples: Dating sites, banking sites, or sites that have to follow embargo rules

Augur

Augur is a system that uses TCP/IP side channels to continuously detect blocking.

- Reduce risks by using only infrastructure devices to source probes
- Can use more than 53,000 to cover more than 180 countries

Side Channels at Other Network Layers

Satellite (Iris)

Satellite is a system that uses DNS open resolvers to detect whether a user can resolve a domain accurately

Goal: Scalable, ethical, and statistically robust system to continuously detect DNS level manipulation

* Satellite: Joint Analysis of CDNs and Network-Level Interference, Satelite, Scott, Anderson, Kohno, and Krishnamurthy. In USENIX ATC, 2016. * Global Measurement of DNS Manipulation, Pearce, Jones, Li, Ensafi, Feamster, Paxson, USENIX Security, August 2017

Deploying Satellite

Challenge: Identify "wrong" DNS responses

Coverage:

- Scan IPv4 for open resolvers: 4.2 M, 232 countries **Ethical:**
 - Using resolvers reasonably attributed to Internet naming infrastructures: ~ 7k

Continuity:

- Satellite doesn't depend on end users' availability, and resolvers have less downtime

Detecting DNS manipulation:

- Using consistency and independent verifiability heuristics.

Side Channels at Other Network Layers

Side Channels at Other Network Layers

Censored Planet, a system that provides a continual and global view of Internet censorship

- **Daily reachability measurements** for key websites from countries worldwide
- Data collected with Augur, Satellite, and Quack combined with **side channels at other network layers**
- Tools for mapping and comparative analyses across locations and time

Censored Planet: Measuring Internet Censorship Globally and Continuously

Roya Ensafi CAIDA, 2018