ICLAB:
A PLATFORM FOR MEASURING ONLINE INFORMATION CONTROLS

PHILLIPA GILL
STONY BROOK UNIVERSITY

ACKS:
SAM BURNETT, MASASHI CRETE-NISHIHATA, JAKUB DALEK, RONALD J. DEIBERT, NICK TEAMSTER, SATHYA GUNASEKARAN, BEN JONES, TZU-WEN LEE, ABBAS RAZAGHPANAH, ADAM SENFT, GREG WISEMAN, JUSTIN WONG
WHY ICLAB?

- The Citizen Lab has developed a unique network of individuals around the world to measure censorship
 - ...but software support is lacking
- Running tests requires human coordination
- Interpreting results is mostly manual
- Existing approach has been in place for nearly 10 years

Idea: Let’s revisit the problem of designing a measurement platform for online information controls from the network measurement perspective
CENSORSHIP MEASUREMENTS 101

- Basic approach
 - Fetch a Web page from a location with suspected censorship – the field
 - Fetch the same Web page simultaneously from a location without censorship – the lab
 - Compare the results
CENSORSHIP
MEASUREMENT 101

Example:

Measured in the lab

Measured in the field

Standard question:
Is this Web site blocked?
CENSORSHIP MEASUREMENT 101

Example:

Measured in the lab

Measured in the field

(no html page returned)

Standard question:
Is this Web site blocked?

We need finer grained measurements to answer this question!
CENSORSHIP MEASUREMENT 101

Example:

Measured in the lab

Measured in the field

(no html page returned)

Standard question:
Is this Web site blocked?

What if we want to ask more questions:
How was this site blocked?
What product was used to block it?
Who is blocking it?
WHAT DOES THIS MEAN FOR ICLAB?

- Platform should support a wide range of network measurement operations
 - **Basics**: HTTP request, Traceroute, DNS queries
 - **Not-so-basics**: HTTP header fingerprinting (Netalyzr test)
 - **Even-less-basics**: Customized IP TTL header to localize the censor in the network
 - **Detecting other information controls**: traffic differentiation, surveillance etc.

CONTENT TYPE: text/html

(sent by client) → CONTENT TYPE: text/html

(received by server)
WHAT DOES THIS MEAN FOR ICLAB?

• Impossible to know the complete set of measurements that need to be supported a priori
 • New censorship technologies emerge, we need to be able to keep up
• Need to be able to implement and launch new experiments on demand
• Need to be flexible about when, where, and what is run
• How to do this well?

Trade off

Flexibility Security for clients

• Our solution: Python experiment specification + Web UI
OVERVIEW OF ICLAB
OVERVIEW OF ICLAB

Clients

Experiments to run + relevant data

Results

Control Server
OVERVIEW OF ICLAB

Clients

Experiments to run + relevant data

Results

Control Server

Web page, reports, papers

Data analysis code (e.g., block page detection, device fingerprinting)

Database
OVERVIEW OF ICLAB

Client + Server in limited beta
Volunteers beginning to deploy nodes
O(100s) of VPN endpoints online
OVERVIEW OF ICLAB

Block page detection algorithms
• Evaluated and used to fingerprint products
• Evaluated on 5 years of historical ONI data
• Appears in IMC 2014
LEVERAGING ARK + ATLAS FOR ICLAB

• Traceroute, and Ping are common to all platforms
 • (RIPE Atlas also has SSL in common with ICLab)

• Challenge to leveraging Ark + Atlas:
 • Censorship-related destinations can put people at risk!

• ICLab has censorship-specific consent process
 • + per country risk information
 • + ongoing monitoring of global politics/situations

• This research may not be considered human subjects!
 • Stony Brook IRB found it not to be human subjects
 • UToronto IRB is working with us

Thanks Citizen Lab!
BABY STEPS... ?

- Not all censored destinations are high risk
 - E.g., Alexa top 100
- Monitor their reachability from Ark nodes
 - Investigate specific outages with more indepth measurements on ICLab nodes

Big Picture Questions

- What to include in measurement platform consent forms?
 - Especially when platform can support wide range of tests!
- How to manage risk to vantage points and measurement targets?
Thanks! Work presented is funded by: NSF Grant CNS 1350720 and a Google Faculty Research Award