perfSONAR

perfSONAR-based Network Research

Brian Tierney, ESnet, bltierney@es.net
February 10, 2016
What is perfSONAR?

- perfSONAR is a tool to:
 - Set (hopefully raise) network performance expectations
 - Find network problems ("soft failures")
 - Help fix these problems
- All in multi-domain environments
- These problems are all harder when multiple networks are involved
 - Focus on Research and Education (R&E) Networking, 1Gbps links or higher
- perfSONAR is provides a standard way to publish active and passive monitoring data
 - This data is interesting to network researchers as well as network operators
Current perfSONAR components

- **Measurement tools**
 - iperf3, bwctl, owamp, traceroute, paris-traceroute, etc.
- **Measurement archive**
- **Central test mesh management tools**
- **Host management tools**
 - Configure tests, configure NTP, etc.
- **Data analysis tools**
 - Plot data from the archive
 - Dashboard tools
- **Lookup Service**
Hard vs. Soft Failures

• “Hard failures” are the kind of problems every organization understands
 – Fiber cut
 – Power failure takes down routers
 – Hardware ceases to function

• Classic monitoring systems are good at alerting hard failures
 – i.e., NOC sees something turn red on their screen
 – Engineers paged by monitoring systems

• “Soft failures” are different and often go undetected
 – Basic connectivity (ping, traceroute, web pages, email) works
 – Performance is just poor

• How much should we care about soft failures?
Main perfSONAR role: Find “Soft Failures”

Gradually failing optics

Under-Powered firewall device

one month
perfSONAR History

- perfSONAR can trace its origin to the Internet2 “End 2 End performance Initiative” from the year 2000.

- What has changed since 2000?
 - The Good News:
 - TCP is much less fragile; Cubic is the default CC alg, autotuning is and larger TCP buffers are everywhere
 - Reliable parallel transfers via tools like Globus Online
 - High-performance UDP-based commercial tools like Aspera
 - *more good news in latest Linux kernel, but it will take 3-4 years before this is widely deployed*
 - The Bad News:
 - The wizard gap is still large
 - Under-buffered and switches and routers are still common
 - Under-powered/misconfigured firewalls are common
 - Soft failures still go undetected for months
 - User performance expectations are still too low
The perfSONAR collaboration

- The perfSONAR collaboration is an Open Source project lead by ESnet, Internet2, Indiana University, and GEANT.
 - Each organization has committed 1.5 FTE effort to the project
 - Plus additional help from many others in the community (OSG, RNP, SLAC, and more)

- The perfSONAR Roadmap is influenced by
 - Requests on the project issue tracker
 - Annual user surveys sent to everyone on the user list
 - Regular meetings with VO using perfSONAR such as the WLCG and OSG
 - Discussions at various perfSONAR related workshops

- Based on the above, every 6-12 months the perfSONAR governance group meets to prioritize features based on:
 - Impact to the community
 - Level of effort required to implement and support
 - Availability of someone with the right skill set for the task
public perfSONAR Servers (Jan 2016)

• Total of around 1700 publicly registered servers
 – Equal number of non-registered servers?
• ESnet: 70
 – mostly 10G, includes a 40G host in Boston
• GEANT: 22
• Internet2: 3
• Some other top deployments:
 – Onenet (24), AMPATH (8), bc.net (10), RNP (8), Canarie (13), kreonet (14), NERO (12), AARnet (19), JGN (17), CENIC (5), KANREN (5)
perfSONAR Hardware

• These days you can get a good 1U host capable of pushing 10Gbps TCP for around $500 (+10G NIC cost, $750?).
 – See perfSONAR user list

• And you can get a host capable of 1G for around $150!
 – Get a multi-core Intel Celeron-based host
 • ARM is not fast enough
 – e.g.: ZBOX by ZOTAC: https://www.zotac.com/us/product/mini_pcs/zbox-ci323-nano

• VMs are not recommended
 – Tools more accurate if can guarantee NIC isolation
perfSONAR 3.5 Update

- perfSONAR 3.5 released October, 2015
 - Modernize the GUIs
 - Support for central host management and node auto-configuration
 - Support for Debian, VMs, and other installation options
 - Support for low cost ($150), 1 Gbps nodes
Expanded perfSONAR Use Cases

• Previous Use Case: perfSONAR Toolkit
 • Includes CentOS 6 and all perfSONAR components

• New Use Cases
 – perfSONAR tools only
 • Support for both RHEL-based and Debian-based hosts
 – perfSONAR hosts that are centrally managed
 • Central manager package
 • Testpoint package
perfSONAR for Network Researchers

• Active measurement interesting for network researchers
 – Traceroute data automatically collected along with bwctl/owamp results
 – TCP retransmits as measured by iperf3

• Data easy to download for analysis
 – esmond-ps-get-bulk
 • Output CSV or JSON
 • See: https://pypi.python.org/pypi/esmond_client

• Additional Information at:
 – http://docsperfsonarnet/client_apis.html
perfSONAR on Low Cost Hardware

• Motivation: make perfSONAR affordable enough to deploy on all subnets

• Assumptions:
 – 1Gbps test nodes
 – Centralized measurement archive
 – Centralized configuration management
 – Debian Linux
Current perfSONAR development

• One of the themes for v3.6 will be “Control and Scalability”
 – perfSONAR is successful because of the ‘default open’ model.
 – BUT, as the number of perfSONAR hosts worldwide grows, we need a way to control
 • Who is running tests
 • How often are they allowed to run tests
 • What hosts can I run tests to? How to I get my host added to someone else’s list of
 allowed hosts?

• Working on a new test scheduler (psScheduler):
 – Shared by all tests and aware of the resources each uses
 – Containing finer grained controls about who can run tests and what tests they
 are allowed to run.
 – Increased visibility and control as to when tests will be run
Roadmap for v3.6

- A test scheduler (psScheduler):
 - Shared by all tests and aware of the resources each uses
 - Containing finer grained controls about who can run tests and what tests they are allowed to run.
 - Increased visibility and control as to when tests will be run
- New graphs that allow for easier comparison of multiple metrics
 - based on ESnet Tools team react-based plotting tools
- A web interface for creating test meshes
- Easier selection of endpoints based on topology location, geographic location, accessibility and/or custom searches
- Dashboards that support alerting based on patterns across an entire mesh
- Debian 8 support
- CentOS 7 versions of the tools, testpoint, core, and central management bundles
 - Full CentOS 7 Toolkit will be in the next release
- Pre-packaged perfSONAR VM images
Example perfSONAR Research Projects
perfSONAR Control Plane (PSCP) Project
Prof. Yan Luo (yan_luo@uml.edu)
perfSONAR Control Plane (PSCP)

- **Objectives**
 - Measurement Archive Data Analysis
 - What are the measurement results? What can we learn?
 - Automatic perfSONAR Peer Selection
 - Quickly identify the best suitable PS node(s) on the routes in question
 - Programmable Measurement and Troubleshooting
 - Define measurement task and conditions with software

- **The Design of perfSONAR Control Plane**
 - Path Discovery
 - Measurement Task Control

https://github.com/ACANETS/pscp

Prof. Yan Luo (yan_luo@uml.edu)
Operation and Use Case of PSCP

• Obtain traceroute information from 95 perfSONAR Measurement Archives
• Build a traceroute graph based on the 1831 records

• Find a set of perfSONAR node pairs to start bandwidth tests and monitor the results
• Use Case: Diagnostic analysis and trouble-shooting a soft network link failure
 – <= 300 LOC Python code, <= 15 minutes

https://github.com/ACANETS/pscp
Prof. Yan Luo (yan_luo@uml.edu)
Pythia Network Diagnosis Infrastructure (PuNDIT)

PIs: Shawn McKee (smckee@umich.edu) and Constantine Dovrolis (constantine@gatech.edu)
About PuNDIT

- PuNDIT is a NSF SSI project which uses perfSONAR data to identify and localize network problems (2014-2016)
 - **Goal** to automate watching/analyzing perfSONAR metrics
 - inform users/site-admins when there are real network problems they should address.
- See further details at http://pundit.gatech.edu
PuNDIT Architecture

- **perfSONAR** provides the base measurement infrastructure
 - Collects network metrics like latency, loss and reordering
 - Collects topological information
 - Adds scamper support to perfSONAR: Multipath Detection Algorithm (MDA) from the *paris-traceroute* team to handle load balanced paths
- A lightweight PuNDIT process on each host performs detection
- The central server holds event repository and runs a localization algorithm
PuNDIT Details

Information Flow

- 2 main message types sent across network:
 - Status updates indicate the network metrics for 5 second windows, sent in a batch every minute
 - Traceroutes in JSON from the Traceroute MA on each host
 - Central Service generates localization events that trigger UI, check_mk and notification daemon

Problems Detected

<table>
<thead>
<tr>
<th>Problems Detected</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive Delays, Losses and Reordering</td>
<td>When these parameters in a 5 second window exceed user-specified thresholds</td>
</tr>
<tr>
<td>Congestion</td>
<td>Delay increases correlated with losses, indicating possible congestion at an interface</td>
</tr>
<tr>
<td>Route Change</td>
<td>A change in route resulting in a sudden and significant change in delay measurements</td>
</tr>
<tr>
<td>Route Instability</td>
<td>Repeated route changes, which results in poor TCP performance</td>
</tr>
<tr>
<td>End-host Context Switch</td>
<td>Context switching of the active measurement applications on an end-host, which may cause measurement fluctuations to be erroneously detected as problems</td>
</tr>
</tbody>
</table>
Active and Growing perfSONAR Community

- Active email lists and forums provide:
 - Instant access to advice and expertise from the community.
 - Ability to share metrics, experience and findings with others to help debug issues on a global scale.
- Joining the community automatically increases the reach and power of perfSONAR
 - The more endpoints means exponentially more ways to test and discover issues, compare metrics
perfSONAR Community

• The perfSONAR collaboration is working to build a strong user community to support the use and development of the software.

• perfSONAR Mailing Lists
 – Announcement Lists:
 • https://mail.internet2.edu/wws/subrequest/perfsonar-announce
 – Users List:
 • https://mail.internet2.edu/wws/subrequest/perfsonar-users
Useful URLs

- http://docs.perfsonar.net/
- http://www.perfsonar.net/
- http://fasterdata.es.net/
- https://github.com/perfsonar
 - https://github.com/perfsonar/project/wiki
Extra Slides
bwctl features

• BWCTL lets you run any of the following between any 2 perfSONAR nodes:
 – iperf3, iperf, nuttcp, ping, owping, traceroute, and tracepath

• Sample Commands:
 • bwctl -c psmsu02.aglt2.org -s elpa-pt1.es.net -T iperf3
 • bwping -s atla-pt1.es.net -c ga-pt1.es.net
 • bwping -E -c www.google.com
 • bwtraceroute -T tracepath -c lbl-pt1.es.net -l 8192 -s atla-pt1.es.net
 • bwping -T owamp -s atla-pt1.es.net -c ga-pt1.es.net -N 1000 -i .01
A small amount of packet loss makes a huge difference in TCP performance.

Throughput vs. Increasing Latency with 0.0046% Packet Loss

With loss, high performance beyond metro distances is essentially impossible.

Measured (TCP Reno) Measured (HTCP) Theoretical (TCP Reno) Measured (no loss)
Improved Support for Central Management

• Goals:
 – Make it easy to incorporate perfSONAR hosts into existing host management systems (puppet, chef, SaltStack, cfengine, etc.)
 • Include sample puppet config files
 – Make it easy to manage many perfSONAR hosts at a single institution
 – New rpm and debian bundles to support this
New perfSONAR Installation options

- In addition to the traditional “Toolkit” install, you now have the these additional options:
 - perfSONAR-Tools:
 - iperf3, bwctl, owamp, nuttcp, etc
 - Install this on DTNs, etc to help with troubleshooting
 - Does not support scheduled testing
 - CentOS and Debian support
 - perfSONAR-TestPoint:
 - tools plus Lookup Service registration and ‘mesh agent’
 - For use in environments with a central measurement archive
 - For use on low end/older hardware (e.g.: $100 nodes)
 - Supports scheduled testing
 - CentOS and Debian support

- See: http://docs.perfsonar.net/install_options.html
New perfSONAR Installation options (cont.)

- perfSONAR-Core:
 - Includes everything except the web interface
 - Use this in environments where your site sysadmins want to fully manage the host configuration, but don’t want to setup a central measurement archive
 - CentOS only

- perfSONAR-CentralManagement:
 - Includes measurement archive, test mesh manager, dashboard
 - Use this to manage a collection of perfSONAR hosts at your site/campus
 - CentOS only
New perfSONAR Installation options (cont.)

- perfSONAR-Complete
 - All perfSONAR packages
 - Use this environments where your sysadmins want to manage the install, but still use the toolkit web interface, system setting, etc
 - the toolkit install will override certain changes every update.
 - CentOS only

- Other packages to note:
 - Separate rpms/debs for iptables config, sysctl config, and ntp packages so you can add them on top of perfSONAR-Core as desired.