NNTSC: A Storage Backend for Network Measurements

Shane Alcock
Network Measurement Eco-System

My cool new measurement tool
Network Measurement Eco-System

My cool new measurement tool

Scheduling

Data Storage

Accessibility

Visualisation
Motivation

• Creating the whole eco-system takes time and skill

• Instead, prototypes get released so we end up with:
 ○ User-unfriendly tools
 ○ Lack of scalability
 ○ No maintainability
Motivation

• Stop rewriting the whole eco-system from scratch
 ○ Design systems that we can reuse and extend
 ○ Refined implementation
 ○ Standardised deployment
 ○ Spend more of our time on cool new tools!

• For this talk, I'm only going to focus on storage
The Idea

• Many network measurements are time series
 ○ Set of common defining parameters
 • Source, target, packet size, protocol, port
 ○ Regular frequency
 ○ Result is a series ID + timestamp + value

• Can we build a unified system to store and access any type of time series data?
Design

• Develop generic core to handle all common actions
 ○ Database inserts and queries, client management
 ○ Wrap around an existing database system

• Modules to define behaviour for specific collections
 ○ Table structure, result parsing
Design

• Historical data access
 ○ Static graphs, repeatable analysis, data download
 ○ Aggregated data vs full resolution data

• Live data access
 ○ Anomaly detection, streaming graphs
 ○ Often an afterthought
Databases are Hard

• Important to choose the database backend carefully!
 ○ We sank a lot of time in solving performance issues
 ○ Happy to share some war stories later :)

• Better options are available today (probably)
 ○ Research, don't just fall back to what you know
 ○ Beware the hype, run your own tests
“Disk Space is Cheap”

• Aim was to store full unaggregated data
 ○ Contrast with RRD – low resolution historic data

• Buying TBs of new disk space was not the problem
 ○ Adding more disk to a running system, however...

• Estimate your future disk usage
 ○ Small storage savings add up over months
Make Sure You Can Scale

- Test and evaluate at scale
 - Many systems look great when you prototype
 - Fall apart as soon as you scale up to production
 - Testing with 1000s of series, months of results
Keep Everything Moving

• Component independence
 ○ Delays in one component shouldn't block others
 ○ Think parallel from the start
 • Split tasks amongst CPU cores
 ○ Use message queues for buffering
 • RabbitMQ is great
 • Python multiprocessing Queues for small jobs
The Best Lesson

• NNTSC works as intended!
 ○ Easy to extend by adding new collections
 ○ A core part of our ongoing research projects

• AMP
 • Network anomaly detection
 • Passive layer-7 statistics
 • Cloud security monitoring