Arming the Defenseless: An Incentive-based Approach to DNS Reflection Prevention

Casey Deccio, Brigham Young University
AIMS 2017
CAIDA, UCSD, La Jolla, CA
March 1, 2017
Reflection/Amplication-based DDoS Attack

- Attackers (Globally distributed)
- Servers (Address B)
- Victim (Address A)
- Queries ((spoofed)A → B)
- Responses (B → A)
DNS Response Rate Limiting (RRL)

- Responses rate limited based on:
 - Frequency of incoming domain name/type/source IP
- Responses are small – simply request retry over TCP
- Legitimate clients still have a reasonable chance
- Weaknesses:
 - Relies on a threshold
 - Deals with amplification, but not reflection
DNS Cookies

- Server sends cookie to client
 - Cookie must be included in subsequent requests
 - Server drops requests from clients that don’t have cookies
- Effective for source IP address validation
- Weaknesses:
 - Cannot be effectively enforced
Source Address Filtering: Best Current Practice 38 (BCP38)

- Filter IP packets whose source IP addresses don’t originate in-network
- That’s it!

Queries
((spoofed)A → B)

Attackers
(Globally distributed)

Servers
(Address B)

Victim
(Address A)
Incentives

Solution Effectiveness

BCP38

DDoS Impact

DNS RRL

Increase Resources
We either need to

incentivize the parties
capable of effective solutions

or

develop effective mechanisms
that can be deployed
by those with incentive
Network Capability Assertion In a Nutshell

• Server enforces source address validation mechanism
 • on demand; or
 • all the time
• To enforce source address validation
 • a server performs a lookup of network capabilities; and
 • ignores requests that don’t validate
Reflection with Enforcement of Source IP Address Validation

Queries ((spoofed)A → B)

Attackers (Globally distributed)

Servers (Address B)

Victim (Address A)
Advertising and Detecting Network Capabilities – in the DNS

- Publish and lookup in .arpa tree in the DNS
 - Example: for 192.0.2.1, query the DNS for 2.0.192.in-addr.arpa
- Network capabilities specified at 8-bit granularity
- Child inherits default policy from parent
- Server assumes defaults until lookup completes