Timing Update

Darryl Veitch
darryl.veitch@uts.edu.au
UTS Timing Project

- Continues SyncLab Project formally at Uni of Melbourne
 - New testbed with
 - Two 7.5G4 DAG cards
 - Low latency taps
 - Rubidium atomic clock (SRS FS725)
 - Several roof mounted GPSes (Trimble and Symmetricom)
 - Time distribution hardware
 - /26 public IPv4 addresses
 - Companion testbed at PolyU (Rocky Chang, Peter Membrey)
RoofLab

Yi Cao
UTS Timing Project

- Continues SyncLab Project formally at Uni of Melbourne
 - New testbed with
 - Two 7.5G4 DAG cards
 - low latency taps
 - Rubidium atomic clock
 - several roof mounted GPSes
 - time distribution hardware
 - /26 public IPv4 addresses
 - Companion testbed at PolyU (Rocky Chang, Peter Membrey)

- Overarching Goal `Perfection of Networked Timekeeping`
 - Continues to develop and support RADclock (see AIMS 2015)
 - New foci in Trusted Timing and the Internet of Things
 - New ARC funding 2017–2012 (Barford, Paxson, Wouters)

- Major Activities
 - Server Health Monitoring (SHM)
 - Network Timing Core (NTC)
Australia’s UTC Clock at the NMI
Recent Work

- **Rot at the Roots? Examining Public Timing Infrastructure**
 - INFOCOM 2016
 - Looks at anomalies in ~100 public Stratum-1 servers

- **Network Timing and the 2015 Leap Second**
 - PAM 2016
 - Leap Second behaviour of ~170 public Stratum-1 servers

- **2016 Leap Second and Anomaly experiment (Dec 2016– Jan 2017)**
 - ~500 public Stratum-1 servers (includes all NTPpool servers)
 - Polling up to 1 per second (previously 64s)
 - Still only 1 vantage point.. Ark!

- **Time to Measure the Pi**
 - IMC 2016
 - Potential of Raspberry Pi-1,2,3 and Pi+PPS as a timing platform
Server Health Anomalies are Real

No RTT `events’:

→ no routing changes
→ no major congestion
→ R(i) should bound A(i)

Large Asym events:

→ can’t be routing
→ can’t be congestion
→ must be server

Longitudinal study (2011,2015)
Out of 102 servers, 37 bad over entire period!
Server Health Monitoring

- Health and Vulnerability of Today’s Internet Timing
 - Stratum-1
 - Generally
 - Main expansion dimensions:
 - assess all IPv4 Stratum-1
 - assess entire IPv4 forest
 - move from single to multiple vantage point

- Statistically sound server anomaly detection
 - Principles; algorithms; code; rigorously evaluated
 - Developing its use:
 - vetting tools [use by experts, anyone]
 - incorporated into timing algorithms and protocols
 - as a service [CAIDA? later taken over by ntp.org?]
Network Timing Core

Stratum-1

Stratum-2

Stratum-3

Stratum-4
NTP Hierarchy — take II

Stratum-1

Stratum-2

Stratum-3

Stratum-4
NTP Forest
But how would we know? No tools!
Idea Behind NTC (‘DNS for timing’)

- **Deal with multiple key problem in one architecture**
 - Failure to address path asymmetry errors
 - Dysfunctional ‘hierarchy’
 - No effective cross validation across the Stratum-1 roots
 - No sync-friendly server selection or load balancing
 - No trust (malicious or incompetent? who cares)

- **Architecture**
 - NTC Fuses Stratum-1’s and privileged Stratum-2’s into a unified layer
 - Rare Stratum-1’s NOT public
 - Many more Stratum-2’s
 - public
 - located within network provider’s networks
 - Self vetting using SHM and voting algorithms
 - Asymmetries
 - directly measurable within Stratum-1 mesh
 - achieved throughout the NTC by calibration
Meshed Stratum-1 + Privileged Stratum-2

NMI and AARNet have agreed to support public trails.
What I Want

- What kind of timeserver vetting/trust do you want/need?

- Developers & Collaborators for
 - NTC
 - RADclock
 - Timing for IoT devices