Yarrp’ing the IPv6 Internet

Eric Gaston
Robert Beverly
Naval Postgraduate School

AIMS 2017
March 2, 2017
IPv6 Active Topology Discovery

- Goal: Discover IPv6 Internet’s interface-level topology
- But, completeness is a challenge with 2^{128} (~3.4 X 10^{38}) unique addresses
- And, rate limiting in IPv6 is more aggressive than in IPv4
- Current state-of-the-art: scan small number of prefixes slowly.
IPv6 Topology Mapping Today
CAIDA IPv6 Topology Probing

- Send probes toward each globally announced /48 or shorter prefix once every 48 hours
- 37,797 prefixes as of February 12, 2017
- From 46 globally distributed Ark VP
- Each VP scamper icmp-paris traceroutes toward ::1 and a random address in each prefixes.
Rohrer et al: IPv6 Scans

- Used Ark
- Largest scan to date probing ~406 million prefixes
- (Data publicly available)
- Traceroute to the ::1 in each /48 in all /32’s
- Scan took 4 months to complete (Nov 14 – Mar 15)
- Current routing table contains ~536 million prefixes
- Increase of 32% in 2 years
Foremski et al: Entropy/IP

- IMC 2016 study to find active portions of IPv6 Internet
- Combines information theory and machine learning to probabilistically model IPv6 addresses
- Ability to generate candidate address list for active scanning can be used to reduce the target space
Why is mapping IPv6 Important?

- IPv6 Topology mapping crucial to:
 - Security
 - Policy
 - Research
- IPv6 use has doubled every year since 2012
- Measurement community needs:
 - Better visibility into IPv6 topology
 - Better tools
Our approach: Yarrp6
What is Yarrp?

https://www.cmand.org/yarrp/

- A new **high-speed stateless traceroute technique** (IMC 2016 demonstrates topo discovery @100K pps)
- Reconstructs states from data encoded in IP and TCP headers of ICMP quotation
- Currently only supports IPv4 and TCP probes
- (Presently working w/ CAIDA to deploy in production)
What is Yarrp6?

- Yarrp6 is a port of Yarrp for IPv6
- Also stateless and randomized
- But encodes state in a different manner
- Maintains Paris traceroute method for all scan
- Adds the capability to do ICMPv6 and UDP scans as well as the TCP SYN and TCP ACK provided by Yarrp
Porting Yarrp to IPv6

- Extending Yarrp to IPv6 is not a trivial task
- Issues:
 - How to encode state
 - Yarrp permutation library’s 32-bit block size too small for IPv6
 - Raw sockets in IPv6 do not allow for full control of packet headers
 - Rate-Limiting of ICMPv6 error messages
 - Unable to detect responses to TCP probes from targets
Initial Experiments

- Sought to validate and compare Yarrp to current state-of-the-art:
 - Recall of Yarrp6 vs. CAIDA v6 probe cycle
 - Speed of Yarrp6 vs. CAIDA v6 probe cycle
 - Compared using CAIDA’s IPv6 data from san-us VP scans done on February 12, 2017
 - Same target list containing 75,594 addresses
Yarrp6 vs. CAIDA (cont.)
Rate Limiting of IPv6

- “an IPv6 node MUST limit the rate of ICMPv6 error messages it originates.” – RFC 4443
- We did observe rate-limiting on IPv6
- Hops 1-4 accounted for ~75% of all missing hops
- Only 57 unique addresses missing from these hop
Comparison of Transport Protocols

- Used yarrp6 to compare probe protocol
- Comparison of Transport Protocol on forward IP path inference.
- Used ICMPv6, UDP, TCP SYN, and TCP ACK Paris traceroute probes
- 3 metrics used for comparison:
 - Destination Reached
 - Complete Paths
 - Unique IP Links
Comparison of Transport Protocols (cont.)

<table>
<thead>
<tr>
<th>Probe Method</th>
<th>Unique Interface</th>
<th>Destinations Reached</th>
<th>Complete IP Paths</th>
<th>Unique IP Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMPv6</td>
<td>45,706</td>
<td>9,535</td>
<td>3,562*</td>
<td>57,667</td>
</tr>
<tr>
<td>UDP</td>
<td>34,567</td>
<td>4,455</td>
<td>1,776*</td>
<td>37,514</td>
</tr>
<tr>
<td>TCP SYN</td>
<td>34,879</td>
<td>N/A#</td>
<td>N/A#</td>
<td>37,655</td>
</tr>
<tr>
<td>TCP ACK</td>
<td>35,178</td>
<td>N/A#</td>
<td>N/A#</td>
<td>38,262</td>
</tr>
</tbody>
</table>

* Hop 3 skipped in determination of complete path
Unable to retrieve encoded information from TCP responses
Future Work

• Working w/ Dave Plonka: Use Entropy/IP to generate target list for Yarrp6 to scan.
• Comparison of Yarrp6 to larger dataset such as Rohrer et al. dataset
• Running scans in rapid succession to allow for study into dynamics of IPv6 Internet.
• Yarrp available now; Yarrp6 real soon now. Contact us to beta!

https://www.cmand.org/yarrp/
Questions?

https://www.cmand.org/yarrp/