Learning to Predict Interactions in Networks

Charles Elkan
University of California, San Diego

Research with Aditya Menon

December 1, 2011
In a social network ...
- Can we predict future friendships?
In a protein-protein interaction network ...

- Can we identify unknown interactions?

C. elegans interactome from proteinfuction.net
An open question

What is a universal model for networks?

Tentative answer:

- Values of explicit variables represent side-information.
- Latent values represent the position of each node in the network.
- The probability that an edge exists is a function of the variables representing its endpoints.

\[p(y|i, j) = \sigma(\alpha_i^T \Lambda \alpha_j + x_i^T W x_j + v^T z_{ij}) \]
Outline

1. Introduction: Nine related prediction tasks
2. The LFL method
3. Link prediction in networks
4. Bilinear regression to learn affinity
5. Discussion
1: Link prediction

- Given current friendship edges, predict future edges.
- Application: Facebook.
- Popular method: compute scores from graph topology.
2: Collaborative filtering

- Given ratings of movies by users, predict other ratings.

- Application: Netflix.

- Popular method: matrix factorization.
3: Suggesting citations

- Each author has referenced certain papers. Which other papers should s/he read?

Method: specialized graphical model.
4: Gene-protein networks

- Experiments indicate which regulatory proteins control which genes.

- Application: Energy independence :-)

- Popular method: support vector machines (SVMs).
5: Item response theory

- Given answers by students to exam questions, predict performance on other questions.

- Applications: Adaptive testing, diagnosis of skills.

- Popular method: latent trait models.
6: Compatibility prediction

- Given questionnaire answers, predict successful dates.

- Application: eHarmony.

- Popular method: learn a Mahalanobis (transformed Euclidean) distance metric.
7: Predicting behavior of shoppers

- A customer’s actions include \{ look at product, put in cart, finish purchase, write review, return for refund \}.

- Application: Amazon.

- New method: LFL (latent factor log linear model).
8: Analyzing legal decision-making

Three federal judges vote on each appeals case. How would other judges have voted?
9: Detecting security violations

- Thousands of employees access thousands of medical records. Which accesses are legitimate, and which are snooping?
Dyadic prediction in general

- Given labels for some pairs of items (some dyads), predict labels for other pairs.

- Popular method: Depends on research community!
Dyadic prediction formally

- **Training set** \(((r_i, c_i), y_i) \in \mathcal{R} \times \mathcal{C} \times \mathcal{Y} \) for \(i = 1 \) to \(i = n \).
 - \((r_i, c_i) \) is a dyad, \(y_i \) is a label.

- **Output**: Function \(f : \mathcal{R} \times \mathcal{C} \to \mathcal{Y} \)
 - Often, but not necessarily, transductive.

- Flexibility in the nature of dyads and labels:
 - \(r_i, c_i \) can be from same or different sets, with or without unique identifiers, with or without feature vectors.
 - \(y_i \) can be unordered, ordered, or real-valued.

- For simplicity, talk about users, movies and ratings.
Latent feature models

- Associate **latent feature values** with each user and movie.
- Each rating is the dot-product of corresponding latent vectors.
- Learn the most predictive vector for each user and movie.

- Latent features play a similar role to explicit features.
- Computationally, learning does SVD (singular value decomposition) with missing data.
What’s new

- Using all available information.
- Inferring good models from unbalanced data
- Predicting well-calibrated probabilities.
- Scaling up.
- Unifying disparate problems in a single framework.
The perspective of computer science

- Solve a predictive problem.
 - Contrast: Non-predictive task, e.g. community detection.

- Make training time linear in number of known edges.
 - Contrast: MCMC, all pairs betweenness, SVD, etc. use too much time or memory.

- Compare on accuracy to best alternative methods.
 - Contrast: Compare only to classic methods.
Issues with some non-CS research

- No objectively measurable goal.
 - An algorithm but no goal function, e.g. betweenness.

- Research on “complex networks” ignores complexity?
 - Uses only graph structure, e.g. commute time.
 - Should also use known properties of nodes and edges.

- Ignoring hubs, partial memberships, overlapping groups, etc.
 - Assuming that the only structure is communities or blocks.
Networks are not special

- A network is merely a sparse binary matrix.
- Many dyadic analysis tasks are not network tasks, e.g. collaborative filtering.
- Human learning results show that social networks are not special.
 - Experimentally: humans are bad at learning network structures.
 - And they learn non-social networks just as well as social ones.
What do humans learn?

- My interpretation, not necessarily the author’s.
- Humans do not learn social networks better than other networks.
- Differences here are explained by memorability of node names.
Humans learn edges involving themselves better than edges involving two other people.
- Humans do not memorize edges at any constant rate.
- Learning slows down and plateaus at low accuracy.
Humans get decent accuracy only on nodes with low or high degree.
Summary of human learning

- A subject learns an edge in a network well only if
 - ▶ the edge involves him/herself, or
 - ▶ one node of the edge has low or high degree.

- Conclusion: Humans do not naturally learn network structures.

- Hypothesis: Instead, humans learn unary characteristics of other people:
 - ▶ whether another person is a loner or gregarious,
 - ▶ whether a person is a friend or enemy of oneself,
 - ▶ in high school, whether another student is a geek or jock,
 - ▶ etc.
Outline

1. Introduction: Nine related prediction tasks
2. The LFL method
3. Link prediction in networks
4. Bilinear regression to learn affinity
5. Discussion
Desiderata for dyadic prediction

- Predictions are pointless unless used to make decisions.
 - Need **probabilities** of ratings e.g. $p(5\text{ stars}|\text{user, movie})$
- What if labels are discrete?
 - Link types may be \{friend, colleague, family\}
 - For Amazon, labels may be \{viewed, purchased, returned\}
- What if a user has no ratings, but has **side-information**?
 - Combine information from **latent** and **explicit** feature vectors.
- Address these issues within the **log-linear** framework.
The log-linear framework

- A log-linear model for inputs $x \in \mathcal{X}$ and labels $y \in \mathcal{Y}$ assumes

$$p(y|x; w) \propto \exp \left(\sum_{i=1}^{n} w_i f_i(x, y) \right)$$

- Predefined feature functions $f_i : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$.
- Trained weight vector w.
- Useful general foundation for predictive models:
 - Models probabilities of labels given an example
 - Purely discriminative: no attempt to model x
 - Labels can be nominal and/or have structure
 - Combines multiple sources of information correctly.
A first log-linear model for dyadic prediction

- For dyadic prediction, each example x is a dyad (r, c).
- Feature functions must depend on both examples and labels.
- Simplest choice:
 \[f_{r'c'y'}((r, c), y) = 1[r = r', c = c', y = y'] \]
- Conceptually, re-arrange w into a matrix W^y for each label y:
 \[p(y|(r, c); w) \propto \exp(W^y_{rc}) \]
Factorizing interaction weights

- **Problem:** $1[r = r', c = c', y = y']$ is too specific to individual (r', c') pairs.

- **Solution:** Factorize the W^y matrices. Write $W^y = A^T B$ so

$$W^y_{rc} = (\alpha^y_r)^T \beta^y_c = \sum_{k=1}^{K} \alpha^y_{rk} \beta^y_{ck}$$

For each y, each user and movie has a vector of values representing characteristics that predict y.

- In practice, a single vector of movie characteristics suffices:
 $$\beta^y_c = \beta_c$$
- The characteristics predicting that a user will rate 1 star versus 5 stars are different.
Incorporating side-information

- If a dyad \((r, c)\) has a vector \(s_{rc} \in \mathbb{R}^d\) of side-information, define

 \[
p(y|(r, c); w) \propto \exp((\alpha_r^y)^T \beta_c^y + (v^y)^T s_{rc}).
 \]

- Multinomial logistic regression with \(s_{rc}\) as feature vector.
What if features are only per-user u_r or per-movie m_c?

Naïve solution: Define $s_{rc} = [u_r \ m_c]$.

- But then all users have the same rankings of movies.

Better: Apply bilinear model to user and movie features

$$p(y|(r,c); w) \propto \exp((\alpha_r^y)^T \beta_c^y + u_r^T V^y m_c).$$

The matrix V^y consists of weights on cross-product features.
The LFL model: definition

- Resulting model with latent and explicit features:

 \[p(y|(r, c); w) \propto \exp((\alpha_r^y)^T \beta_c^y + (v^y)^T s_{rc} + u_r^T V^y m_c) \]

- \(\alpha_r^y \) and \(\beta_c^y \) are latent feature vectors in \(\mathbb{R}^K \).
 - \(K \) is number of latent features

- Practical details:
 - Fix a base class for identifiability.
 - Intercept terms for each user and movie are important.
 - Use \(L_2 \) regularization.
 - Train with stochastic gradient descent (SGD).
Unordered versus numerical labels

- For unordered ratings, predict the most probable, and train to optimize log likelihood.
- Not desirable for numerical ratings:
 - Difference between 1 and $5 \neq$ difference between 4 and 5
- Better: Predict

\[
\mathbb{E}[y] = \sum_{y=1}^{\vert\mathcal{Y}\vert} y \cdot p(y|(r,c);w)
\]

and optimize mean squared error \textbf{MSE}.
 - The expectation $\mathbb{E}[y]$ is a summary function.
 - A standard latent feature model is limited to one factorization for all rating levels.
Assessing uncertainty

- The variance measures the **uncertainty** of a prediction.

- For numerical ratings

\[
E[y^2] - (E[y])^2 = \sum y^2 \cdot p(y|(r, c); w) - \left(\sum y \cdot p(y|(r, c); w) \right)^2
\]

- Can be combined with business rules, e.g. if confidence in predicted link < cost threshold then do not run expensive experiment.
Experimental goals

Show ability to
- Handle unordered labels for multiclass link prediction
- Exploit numerical structure of labels for collaborative filtering
- Incorporate side-information in a cold-start setting.

Later:
- More detailed study of link prediction
- Complementarity of explicit and latent features.
Multiclass link prediction

- The *Alyawarra* dataset has kinship relations \{brother, sister, father, ...\} between 104 people.

- LFL outperforms Bayesian models, even infinite ones.
 - MMSB, IRM assume interactions set by cluster membership.
 - IBP has binary latent features.

- Bayesian averaging over multiple models does not add power.
Collaborative filtering

- **MovieLens** (6040 users, 3952 movies, 1M ratings of 1-5 stars)
- **EachMovie** (36,656 users, 1628 movies, 2.6M ratings of 1-6 stars)

- LFL model is more general, more accurate, and faster than maximum margin matrix factorization [Rennie and Srebro, 2005].
Measuring uncertainty

- Estimated uncertainty correlates with observed test set errors and average rating of movie. For MovieLens:

<table>
<thead>
<tr>
<th>Lowest variance</th>
<th>Highest variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kazaam</td>
<td>Grateful Dead</td>
</tr>
<tr>
<td>Lawnmower Man 2: Beyond Cyberspace</td>
<td>The Rescuers</td>
</tr>
<tr>
<td>Problem Child 2</td>
<td>Prizzi’s Honor</td>
</tr>
<tr>
<td>Meatballs III</td>
<td>Homeward Bound: The Incredible Journey</td>
</tr>
<tr>
<td>Pokemon the Movie 2000</td>
<td>The Fly</td>
</tr>
</tbody>
</table>
Side-information solves the cold-start problem

- Three scenarios on the 100K MovieLens dataset:
 - **Standard**: No cold-start for users or movies
 - **Cold-start users**: Randomly discard ratings of 50 users
 - **Cold-start users + movies**: Randomly discard ratings of 50 users and ratings for all their test set movies also.
Outline

1. Introduction: Nine related prediction tasks
2. The LFL method
3. Link prediction in networks
4. Bilinear regression to learn affinity
5. Discussion
Link prediction

- **Link prediction**: Given a partially observed graph, predict whether or not edges exist for the unknown-status pairs.

Unsupervised (non-learning) scores are classical models
 - e.g. common neighbors, Katz measure, Adamic-Adar.

Technically, **structural** rather than **temporal** link prediction.
Latent feature approach

- Each node’s **identity** influences its linking behavior.
- Nodes also can have **side-information** predictive of linking.
 - For author-author linking, side-information can be words in authors’ papers.
- Edges may also possess side-information.
 - For country-country conflict, side-information is geographic distance, trade volume, etc.
- Identity determines latent features.
Latent feature approach

- LFL model for binary link prediction has parameters
 - latent vectors \(\alpha_i \in \mathbb{R}^k \) for each node \(i \)
 - scaling factors \(\Lambda \in \mathbb{R}^{k \times k} \) for asymmetric graphs
 - weights \(W \in \mathbb{R}^{d \times d} \) for node features
 - weights \(v \in \mathbb{R}^{d'} \) for edge features.

- Given node features \(x_i \) and edge features \(z_{ij} \)

\[
\hat{G}_{ij} = p(\text{edge}|i,j) = \sigma(\alpha_i^T \Lambda \alpha_j + x_i^T W x_j + v^T z_{ij})
\]

for sigmoid function \(\sigma(x) = 1/(1 + \exp(-x)) \)

- Minimize regularized training loss:

\[
\min_{\alpha, \Lambda, W, v} \sum_{(i,j) \in T} \ell(G_{ij}, \hat{G}_{ij}) + \Omega(\alpha, \Lambda, W, v)
\]
Challenge: Class imbalance

- Vast majority of node-pairs do not link with each other.
- AUC (area under ROC curve) is standard performance measure.
- For a random pair of positive and negative examples, AUC is the probability that the positive one has higher score.
 - Not influenced by relative size of positive and negative classes.
- Model trained to maximize accuracy is potentially suboptimal.
 - **Sampling** is popular, but loses information.
 - **Weighting** is merely heuristic.
Optimizing AUC

- Empirical AUC counts concordant pairs

\[A \propto \sum_{p \in +, q \in -} 1[f_p - f_q > 0] \]

- Train latent features to maximize approximation to AUC:

\[
\min_{\alpha, \Lambda, W, v} \sum_{(i,j,k) \in D} \ell(\hat{G}_{ij} - \hat{G}_{ik}, 1) + \Omega(\alpha, \Lambda, W, v)
\]

where \(D = \{(i,j,k) : G_{ij} = 1, G_{ik} = 0\} \).

- With stochastic gradient descent, a fraction of one epoch is enough for convergence.
Experimental comparison

Compare

- latent features versus unsupervised scores
- latent features versus explicit features.

Datasets from applications of link prediction:

- **Computational biology**: Protein-protein interaction network, metabolic interaction network
- **Citation networks**: NIPS authors, condensed matter physicists
- **Social phenomena**: Military conflicts between countries, U.S. electric power grid.
Link prediction datasets

| Dataset | Nodes | $|T^+|$ | $|T^-|$ | +ve:−ve ratio | Average degree |
|------------|-------|-------|-------|--------------|----------------|
| Prot-Prot | 2617 | 23710 | 6,824,979 | 1 : 300 | 9.1 |
| Metabolic | 668 | 5564 | 440,660 | 1 : 80 | 8.3 |
| NIPS | 2865 | 9466 | 8,198,759 | 1 : 866 | 3.3 |
| Condmat | 14230 | 2392 | 429,232 | 1 : 179 | 0.17 |
| Conflict | 130 | 320 | 16580 | 1 : 52 | 2.5 |
| PowerGrid | 4941 | 13188 | 24,400,293 | 1 : 2000 | 2.7 |

- Protein-protein interaction data from Noble. Each protein has a 76 dimensional explicit feature vector.
- Metabolic pathway interaction data for *S. cerevisiae* provided in the KEGG/PATHWAY database [ISMB]. Each node has three feature sets: a 157 dimensional vector of phylogenetic information, a 145 dimensional vector of gene expression information, and a 23 dimensional vector of gene location information.
- NIPS: Each node has a 14035 dimensional bag-of-words feature vector, the words used by the author in her publications. LSI reduces the number of features to 100.
- Co-author network of condensed-matter physicists [Newman].
- Military disputes between countries [MID 3.0]. Each node has 3 features: population, GDP and polity. Each dyad has 6 features, e.g. the countries’ geographic distance.
- US electric power grid network [Watts and Strogatz].
Latent features versus unsupervised scores

- Latent features are more predictive of linking behavior.
Learning curves

- Unsupervised scores need many edges to be known.
- Latent features are predictive with fewer known edges.
- For the military conflicts dataset:
Latent features combined with side-information

- Difficult to infer latent structure more predictive than side-information.

- But combining the two can be beneficial:
Outline

1. Introduction: Nine related prediction tasks
2. The LFL method
3. Link prediction in networks
4. Bilinear regression to learn affinity
5. Discussion
What is affinity?

- Affinity may be called similarity, relatedness, compatibility, relevance, appropriateness, suitability, and more.
 - Two OCR images are similar if they are versions of the same letter.
 - Two eHarmony members are compatible if they were mutually interested in meeting.
 - An advertisement is relevant for a query if a user clicks on it.
 - An action is suitable for a state if it has high long-term value.
- Affinity can be between items from the same or different spaces.
- Affinity can be binary or real-valued.
The propensity problem

- Idea: To predict affinity, train a linear function

\[f(u, v) = w \cdot [u, v]. \]

- Flaw: Ranking of second entities \(v \) is the same regardless of \(u \):

\[f(u, v) = w \cdot [u, v] = w_u \cdot u + w_v \cdot v. \]

The ranking of \(v \) entities is by the dot product \(w_v \cdot v \).
Bilinear representation

- Proposal: Represent affinity of vectors u and v with a function $f(u, v) = u^T W v$

where W is a matrix.

- Different vectors u give different ranking vectors $w(u) = u^T W$.
A training example is \(\langle u, v, y \rangle \) where \(y \) is a degree of affinity.

Let \(u \) and \(v \) have length \(m \) and \(n \). Then

\[
 u^T W v = \sum_{i=1}^{m} \sum_{j=1}^{n} (W \circ uv^T)_{ij} = \text{vec}(W) \cdot \text{vec}(uv^T).
\]

Idea: Convert \(\langle u, v, y \rangle \) into \(\langle \text{vec}(uv^T), y \rangle \).

Then learn \(\text{vec}(W) \) by standard linear regression.
What does W mean?

- Each entry of uv^T is the interaction of a feature of the u entity and a feature of the v entity.
- Labels may be real-valued or binary: $y = 1$ for affinity, $y = 0$ for no affinity.
- Can use regularization, logistic regression, linear SVM, and more.
- Can maximize AUC.
Re-representations

- Add a constant 1 to u and v to capture propensities.
- If u and v are too short, expand them, e.g. change u to uu^T.
- If u and/or v is too long, define $W = AB^T$ where A and B are rectangular.
- If W is square, define $W = AB^T + D$ where D is diagonal.
- But finding the optimal representation AB^T or $AB^T + D$ is not a convex problem.
Affinities versus distances

- Learning affinity is an alternative to learning a distance metric.
- The Mahalanobis metric is $d(u, v) = \sqrt{(u - v)^T M (u - v)}$
 where M is positive semidefinite.
- Learning affinities is more general.
 - Distance is defined only if u and v belong to the same space.
 - In information retrieval, u can be a query in one language and v
 can be a relevant document in a different language.
- Affinity is not always symmetric.
 - Because queries are shorter than documents, the relatedness of
 queries and documents is not symmetric.
Learning Mahalanobis distance

- Squared Mahalanobis distance is \(d^2(u, v) = \)

\[
(u - v)^T M (u - v) = \sum_{i=1}^{n} \sum_{j=1}^{n} (M \circ (u - v)(u - v)^T)_{ij}
\]

\[
= \text{vec}(M) \cdot \text{vec}((u - v)(u - v)^T).
\]

- So \(M \) can be learned by linear regression, like \(W \).

- The outer product \((u - v)(u - v)^T\) is symmetric, so \(M \) is symmetric also.

- Existing methods for learning Mahalanobis distance are less efficient.
Experiments with eHarmony data

- The training set has 506,688 labeled pairs involving 274,654 members of eHarmony, with 12.3% positive pairs.
- The test set has 439,161 pairs involving 211,810 people, with 11.9% positive pairs.
- Previously used in [McFee and Lanckriet, 2010].
Visualization

- Positive training pairs from the U.S. and Canada.

Each line segment connects the locations of two individuals in the eHarmony training set who are compatible.
Data representations

- Each user is a vector of length \(d = 56 \). “Propensity” uses vectors of length \(2d + 1 \).
- “Interaction” uses length \(3d + 1 \) by adding \(u_i v_i \) for \(i = 1 \) to \(d \).
- “Extended interaction” adds nonlinear transformations of components \(u_i \) and \(v_i \).
- “Bilinear” uses vectors of length \(d^2 \).
- “Mahalanobis” uses vectors of length \(d(d + 1)/2 = 1597 \).
- Extended bilinear and Mahalanobis representations use quadratic vectors concatenated with extended interaction vectors.
Experimental details

- Training uses linear regression with an intercept.
- Targets are 0 or 1. Features are z-scored.
- L_2 regularization with strength one.
- For comparability, id numbers, latitudes, and longitudes are ignored.
Experimental results

- **Training and test AUC for alternative representations.**

<table>
<thead>
<tr>
<th>representation</th>
<th>training AUC</th>
<th>test AUC</th>
<th>time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLR-MAP</td>
<td>0.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>propensity</td>
<td>0.6299</td>
<td>0.6354</td>
<td>14</td>
</tr>
<tr>
<td>interaction</td>
<td>0.6410</td>
<td>0.6446</td>
<td>20</td>
</tr>
<tr>
<td>extended interaction</td>
<td>0.6601</td>
<td>0.6639</td>
<td>64</td>
</tr>
<tr>
<td>Mahalanobis</td>
<td>0.6356</td>
<td>0.6076</td>
<td>379</td>
</tr>
<tr>
<td>extended Mahalanobis</td>
<td>0.6794</td>
<td>0.6694</td>
<td>459</td>
</tr>
<tr>
<td>bilinear</td>
<td>0.6589</td>
<td>0.6374</td>
<td>973</td>
</tr>
<tr>
<td>extended bilinear</td>
<td>0.6740</td>
<td>0.6576</td>
<td>1324</td>
</tr>
</tbody>
</table>

- The large test set makes differences statistically significant.
Observations

- Bilinear regression is tractable. Training with a half million examples of expanded length 3000 takes 22 minutes.
- Learning propensity is a strong baseline, with higher accuracy than the best previous method.
- Bilinear affinity gives higher accuracy than Mahalanobis distance.
- A nonlinear extended version of Mahalanobis distance is best overall.
Outline

1. Introduction: Nine related prediction tasks
2. The LFL method
3. Link prediction in networks
4. Bilinear regression to learn affinity
5. Discussion
If time allowed

- Predicting labels for nodes, e.g. who will play Farmville (within network classification, collective classification).
Conclusions

- Many prediction tasks involve pairs of entities: collaborative filtering, friend suggestion, compatibility forecasting, reinforcement learning, and more.
- Edge prediction based on learning latent features is more accurate than prediction based on any graph-theoretic formula.
- The most successful methods combine latent features with explicit features of nodes and of dyads.
