Searching for DNS Cache Poisoners

Duane Wessels
The Measurement Factory/ISC/CAIDA
wessels@measurement-factory.com

July 25, 2005
Motivation

• During March/April 2005, SANS Internet Storm Center reports a number of DNS cache poisoning “attacks” are occurring.

 http://isc.sans.org/presentations/dnspoisening.php

• Poisoned nameservers have bogus NS records for the com zone.

• May have been a vector for spyware propagation.

• Microsoft Windows NT, 2000, 2003 are affected.
The Poisoning Attack

- An authoritative nameserver is configured to return a bogus and out-of-bailiwick NS authority record. See example next slide.

- A caching resolver trusts and caches the bogus referral.

- Future queries for names in the poisoned zone go to the bogus nameserver.

- The bogus nameserver returns incorrect answers to queries that it should not be receiving.
Poison

; <<>> DiG 9.3.1 <<>> +trace none.cc
;; global options: printcmd
. 30321 IN NS A.ROOT-SERVERS.NET.
. 30321 IN NS H.ROOT-SERVERS.NET.
. 30321 IN NS C.ROOT-SERVERS.NET.
. 30321 IN NS G.ROOT-SERVERS.NET.
. 30321 IN NS F.ROOT-SERVERS.NET.
. 30321 IN NS B.ROOT-SERVERS.NET.
. 30321 IN NS J.ROOT-SERVERS.NET.
. 30321 IN NS K.ROOT-SERVERS.NET.
. 30321 IN NS L.ROOT-SERVERS.NET.
. 30321 IN NS M.ROOT-SERVERS.NET.
. 30321 IN NS I.ROOT-SERVERS.NET.
. 30321 IN NS E.ROOT-SERVERS.NET.
. 30321 IN NS D.ROOT-SERVERS.NET.

;; Received 436 bytes from 206.168.0.2#53(206.168.0.2) in 3 ms
Poison, cont

<table>
<thead>
<tr>
<th>cc.</th>
<th>172800 IN NS L3.NSTLD.COM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cc.</td>
<td>172800 IN NS D3.NSTLD.COM.</td>
</tr>
<tr>
<td>cc.</td>
<td>172800 IN NS A3.NSTLD.COM.</td>
</tr>
<tr>
<td>cc.</td>
<td>172800 IN NS E3.NSTLD.COM.</td>
</tr>
<tr>
<td>cc.</td>
<td>172800 IN NS C3.NSTLD.COM.</td>
</tr>
<tr>
<td>cc.</td>
<td>172800 IN NS G3.NSTLD.COM.</td>
</tr>
<tr>
<td>cc.</td>
<td>172800 IN NS M3.NSTLD.COM.</td>
</tr>
<tr>
<td>cc.</td>
<td>172800 IN NS H3.NSTLD.COM.</td>
</tr>
</tbody>
</table>

;; Received 298 bytes from 198.41.0.4#53(A.ROOT-SERVERS.NET) in 52 ms
Poison, cont

none.cc. 172800 IN NS NS1.FRAKES.NET.
none.cc. 172800 IN NS NS2.FRAKES.NET.
;; Received 71 bytes from 192.41.162.32#53(L3.NSTLD.COM) in 56 ms

none.cc. 86400 IN A 64.202.173.35
c. 86400 IN NS ns3.cc.
c. 86400 IN NS ns1.cc.
c. 86400 IN NS ns2.cc.
;; Received 143 bytes from 66.249.7.25#53(NS2.FRAKES.NET) in 51 ms
Poison, cont

; <<>> DiG 9.3.1 <<>> @ns2.frakes.net boogaboogabooga.cc

;; QUESTION SECTION:
;boogaboogabooga.cc. IN A

;; ANSWER SECTION:
boogaboogabooga.cc. 86400 IN A 64.202.173.35

;; AUTHORITY SECTION:
cc. 86400 IN NS ns3.cc.
cc. 86400 IN NS ns1.cc.
cc. 86400 IN NS ns2.cc.

;; ADDITIONAL SECTION:
s1.cc. 86400 IN A 66.249.1.244
ns2.cc. 86400 IN A 66.249.7.25
ns3.cc. 86400 IN A 66.249.1.100

Wildcard?
Vulnerable Implementations

- Windows NT
 - vulnerable by default
 - SP4 and later can become not-vulnerable after editing registry

- Windows 2000
 - SP1, SP2 vulnerable by default
 - SP3 and later not-vulnerable by default

- Windows 2003
 - not-vulnerable by default

- Symantec gateway/firewall products
Searching for Poisoners

• Start with a (large) list of DNS names or zones.

• Discover the set of authoritative nameservers for a zone by following referrals starting at the root (or at least TLD).

• Query each authoritative nameserver.

• Compare the NS RR set in each reply to the previously-learned referrals for parent zones.

• This technique only finds parent-zone poisoning. Furthermore, we are limiting our search to TLD poisoning at this point.
Survey 2005-06-03

• Input is 12,521,883 names from tcpdump on F-root.

• Found 172 “poisoning” nameservers — these return bogus referrals to a TLD.

• The following zones are poisoned:

<table>
<thead>
<tr>
<th>zone</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>150</td>
</tr>
<tr>
<td>com</td>
<td>13</td>
</tr>
<tr>
<td>net</td>
<td>10</td>
</tr>
<tr>
<td>cc</td>
<td>2</td>
</tr>
<tr>
<td>info</td>
<td>2</td>
</tr>
<tr>
<td>cn</td>
<td>1</td>
</tr>
<tr>
<td>org</td>
<td>1</td>
</tr>
</tbody>
</table>

• Some nameservers poison multiple zones
Is the Sky Falling?

- With so many poisoners out there, why don’t we hear about more problems?

- Fortunately, it seems that most implementations do not allow the root zone to be poisoned.

- Maybe nobody ever uses the names for which they are authoritative.

- Maybe the bogus nameservers return “NXDOMAIN” or some other non-answer.
 - yes, some do

- Maybe they answer and proxy the (web) traffic so the user doesn’t even realize it.
 - yes, some do
Absence of Malice?

Never attribute to malice what can adequately be explained by stupidity

- Many of the poisoners are companies that provide DNS-related services
 - registrars
 - resellers
 - speculators
 - brokers

- Others appear to be legitimate companies.

- They should know better.

- Many of the names leading to poisoners are within expired zones. That is, put the name in your browser and you see a page telling you “This domain name has expired. Click here to pay.”
Stupidity

• We suspect that many of these potential poisoners are just being lazy.

• For example, the BIND nameserver requires one file per zone, which becomes a problem when you have many zones.

• So they are probably creating a zone file for the parent and listing all their zones, or worse, using wildcards.
Stupidity, For Example

$ORIGIN com.
@ IN SOA ns1.goober.com root.goober.com
 (100 200 300 400 500)
 IN NS ns1.goober.com.
 IN NS ns2.goober.com.
expired1 IN A 192.168.0.1
expired2 IN A 192.168.0.1
expired3 IN A 192.168.0.1
expired4 IN A 192.168.0.1
...

It’s also likely that they would use a wildcard, rather than list the domains individually.
Next Steps

- Continue scanning for poisoners and nameservers with bogus referrals.
- Automate the procedure
- Make weekly “shame list” reports available to OARC members and network operators.
- Try to categorize poisoners as malicious, lazy, etc.
- Consider other ways to poison a DNS cache.
The End