FluxBuster

Early Detection of Malicious Flux Networks via Large-Scale Passive DNS Traffic Analysis

Roberto Perdisci
Flux Networks
Research Goals

• Previous works on flux detection based mainly on active probing
 – Limited to known bad or suspicious domains
 – Domains treated independently
 – Possible data pollution by attackers

• Passive Detection
 – Monitor “behavior” of all domains over time
 – Let other people query for you in a distributed way!
 – Only focus on live domains
 – Discover zero-day flux domains!
FluxBuster System Overview

- Given a domain d, aggregate all info about d collected during a time T (e.g., 24h)
- Use conservative heuristics to filter out domains that are highly unlikely flux
- Group domains that are related to each other
 - significant intersection between sets of resolved IPs
 - Candidate Flux Networks
- Statistical classifier automatically labels candidate flux networks
 - Each candidate flux networks is described by a number of features
 - flux or non-flux
Message Pre-Filtering

- Conservative Filtering
 - Objective: reduce burden on following modules
 - Consider only domains for which all of the following constraints hold
 - $\text{avg}(\text{TTL}) \leq 3600$
 - $\# \text{ of RIPs} \geq 3$ OR $\text{avg}(\text{TTL}) \leq 30$
 - $\text{div}(\text{RIPs}) \geq 1/3$

\[
\text{div}(\text{RIP}) = \frac{\# \text{ /16 prefixes in RIPs}}{\# \text{ of RIPs}}
\]
Domain Clustering

- Group domains that are related to each other
 - Hierarchical clustering algorithm
 - Similarity measure based on resolved IPs

\[
sim(\alpha, \beta) = \frac{|R_\alpha \cap R_\beta|}{|R_\alpha \cup R_\beta|} \cdot \frac{1}{1 + e^{\gamma - \min(|R_\alpha|, |R_\beta|)}}
\]

Jaccard Index
Supervised Classifier

- Input: Clusters of domains
 - Clusters are translated into feature vectors
- Supervised Training:
 - Need labeled data (ground truth)
 - We built a web interface to facilitate semi-manual labeling
- Output: new (unlabeled) clusters are labeled as either *flux* or *non-flux*
Statistical Features

• Measurements on each domain cluster
 \(\phi_1\) — # of IPs in RIPS set
 \(\phi_2\) — # of Domains
 \(\phi_3\) — avg(TTL)
 \(\phi_4\) — # domains that have recently pointed to any of RIPS
 \(\phi_5\) — Entropy of /16 prefixes
 \(\phi_5 = -\sum_x p(x) \cdot \log_2 p(x) / \log_2(\phi_1)\)

Overall we measure **13 statistical features**
Cross-Validation

- Labeled Dataset
 - semi-manual labeling process
 - If no clear-cut decision, exclude cluster to minimize training noise
 - 1,337 clusters labeled as flux
 - 100,644 distinct 2LDs (113,580 FQDs)
 - 5,708 labeled as non-flux
 - 2,116 distinct 2LDs (59,215 FQDs)

ROC Curve

- TP = 99.3% FP = 0.15%
- AUC = 0.994
Live Traffic Evaluation

- 5 months of operational deployment
 - 4,084 domain clusters labeled as *flux*
 - 1,743 2LDs (63,442 FQDs)
 - 3,633 domain clusters labeled as *non-flux*
 - 227,667 2LDs (264,550 FQDs)
 - Threshold K = 30 distinct IPs
 - Clusters with less than 30 resolved IPs are discarded

- Measure four different quantities
 - False Positives
 - False Negatives
 - True Positives
 - True Negatives

- Separately measured due to many *unknown* domains that cannot be easily verified as either flux or not
Ground Truth

• A domain cluster C may fall into three categories:
 – (1) TPs: C includes domains and/or IPs that are known to be related to a flux network
 – (2) FPs: C does not represent a flux network, and may instead represent a CDN or other legitimate services
 – (3) NAs: the true nature of C is unknown, that is no prior information exists on this cluster in any public (or even private) security data sources.

• (1) top flux domains from abuse.ch (KFD) + domains from public malware domain blacklists (KMD)
• (2) consistently top 100k Alexa (ATD), >300k domains from Yahoo DMOZ (YDD), list of known CDN domains (CDN)
Live Results Summary

TPs
- 24/75 KFD (50 domains not visible in SIE)
- 179/10,447 KMD (Note: most malware domains are not flux domains)
- 525 + 595 new flux domains using KFD and KMD as “seed”, respectively (guilty by association)

FPs
- 2/57,910 2LDs in ADT (pool.ntp.org, qyy3606.meibu.com)
- pool.ntp.org appeared only briefly (filtered at the source by SIE for ch.204?)
- 0 in CDN and 0 from YDD

FNs
- Domains consistently classified as non-flux
 - 1 from KFD: discountpharmacyhealth.net
 - 30 from KMD

TNs
- 171 2LDs in ATD+YDD+CDN
- 227,667 2LDs remain unknown

<table>
<thead>
<tr>
<th>Flux domains</th>
<th>1,743 2LDs (63,442 FQDs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux agent IPs</td>
<td>317,203 distinct IP addresses (on average 3,265 distinct IPs per day)</td>
</tr>
<tr>
<td>Previously unknown flux 2LDs</td>
<td>995 through a “domain-based” analysis, and 1,030 through an “IP-based analysis” (using guilty-by-association)</td>
</tr>
<tr>
<td>Early-detection results</td>
<td>64.5% of malicious 2LDs detected earlier than other state-of-the-art tools (131 2LDs out of 203)</td>
</tr>
<tr>
<td>Previously unknown flux agent IPs</td>
<td>62% of flux agents tested against abuse.ch DNSBL service</td>
</tr>
</tbody>
</table>
Early Detection

• 9/24 KFD detected earlier than abuse.ch
• 125/179 KMD detected earlier than appeared in BLs
• 13/21 Zeus flux domains detected earlier than BLs
SafeBrowsing

• Take flux domains and
 – Check if port 80 is open
 – Check for valid HTTP response/content
 – Vet against SafeBrowsing (SB) and malware BLs
 • Most missed by SB are rogue pharmacies, porn-related sites
 • SB only reports known phishing and malware sites
Thank You!

Acknowledgements
✓ ISC/SIE (especially Robert)
✓ Igino Corona (U. Cagliari)
✓ David Dagon (GaTech)
✓ Wenke Lee (GaTech)
✓ Giorgio Giacinto (U. Cagliari)

Source Code Available!
http://code.google.com/p/fluxbuster

Sponsor
✓ NSF SDCISec Program

Early Detection of Malicious Flux Networks via Large-Scale Passive DNS Traffic Analysis