Measuring Provider Path Diversity from Traceroute Data: work in progress

[CAIDA-ISMA workshop 12/18/2001]

Krishna Nayak and Dan McKernan
netVmg, Inc., San Jose, CA
Motivation: Multi-homing

• “Multi-homing” (connecting to multiple ISPs) is becoming increasingly popular

• Originally this redundancy was used to maintain connectivity to a large set of endpoints.

• Now being used to optimize performance over a large set of endpoints

“intelligent route control”
new companies
Multi-homed Network

Source

Provider A

Internet

Provider B

Destination
Path Diversity?
Path Diversity?
Questions

From a given customer {network viewpoint + destinations}:

- How much path diversity exists across providers?
- What combination of providers will give the most/least diversity?
Terminology

Viewpoint

A

B

Providers

Convergence Point

Endpoint

Shared Path
Measurement Sample

- **Viewpoint:** POP in San Jose, CA
- **Providers:** Exodus, UUNet, Sprint, AT&T
- **Endpoints:** 8,932 from unique /24 prefixes (randomly selected from 46,089 by netflow)
Measurement Setup/Tools

• UDP Traceroute: via BGP default path, and through all four providers
 ▪ Outbound TOS-filtering at border router
 ▪ Same source address

• Processing
 ▪ RTT (as a measure of forward latency) is made monotonically increasing
Single Host Convergence

- Convergence Points are located for each pair of providers

- The hop before the first shared IP address
 - Different interfaces to the same router will have different IP addresses
Convergence Point

Provider A (Sprint):
<table>
<thead>
<tr>
<th>Hop</th>
<th>RTT</th>
<th>IP Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.306</td>
<td>fe0-0.BR1.C11-0.SJC.ivmg.net</td>
<td>64.41.255.1</td>
</tr>
<tr>
<td>9</td>
<td>81.031</td>
<td>if-9-0.core1.NewYork.Teleglobe.net</td>
<td>207.45.220.57</td>
</tr>
<tr>
<td>10</td>
<td>80.578</td>
<td>if-10-0.bb8.NewYork.Teleglobe.net</td>
<td>207.45.223.110</td>
</tr>
<tr>
<td>11</td>
<td>81.408</td>
<td>ix-9-2.bb8.NewYork.Teleglobe.net</td>
<td>207.45.198.94</td>
</tr>
<tr>
<td>12</td>
<td>148.263</td>
<td>us-gw2.ja.net</td>
<td>193.62.157.17</td>
</tr>
<tr>
<td>18</td>
<td>151.053</td>
<td>wwwws-a.ucl.ac.uk</td>
<td>144.82.100.130</td>
</tr>
</tbody>
</table>

Provider B (Exodus):
<table>
<thead>
<tr>
<th>Hop</th>
<th>RTT</th>
<th>IP Address</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.302</td>
<td>fe0-0.BR1.C11-0.SJC.ivmg.net</td>
<td>64.41.255.1</td>
</tr>
<tr>
<td>11</td>
<td>74.005</td>
<td>if-6-0.core2.NewYork.Teleglobe.net</td>
<td>64.86.83.157</td>
</tr>
<tr>
<td>12</td>
<td>73.216</td>
<td>if-6-0.bb8.NewYork.Teleglobe.net</td>
<td>207.45.222.22</td>
</tr>
<tr>
<td>14</td>
<td>140.905</td>
<td>us-gw2.ja.net</td>
<td>193.62.157.17</td>
</tr>
<tr>
<td>20</td>
<td>143.992</td>
<td>wwwws-a.ucl.ac.uk</td>
<td>144.82.100.130</td>
</tr>
</tbody>
</table>
Multiple Convergence Points

1: AT&T
2: Sprint
3: UUNET
4: Exodus

2: 9/9ms
3: 9/10ms
4: 11/6ms

1: 8/11ms
2: 10/10ms
3: 10/10ms
4: 14/14ms

SJC
sade.stanford.edu
Summarizing Many Endpoints

- Difficult Problem

- Focus on two providers at a time
 - One convergence point per destination
 - One shared path per destination
Terminology

- Providers
- Viewpoint A
- Viewpoint B
- Convergence Point
- Endpoint
- Shared Path
Verbose Reporting

<table>
<thead>
<tr>
<th>destination</th>
<th>sprint</th>
<th>CONV</th>
<th>exodus</th>
<th>CONV</th>
<th>%hop</th>
<th>%lat</th>
</tr>
</thead>
<tbody>
<tr>
<td>nytimes.com</td>
<td>--</td>
<td>10</td>
<td>65.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cnn.com</td>
<td>--</td>
<td>11</td>
<td>69.19</td>
<td>14</td>
<td>45.16</td>
<td>11</td>
</tr>
<tr>
<td>washingtonpost.com</td>
<td>16</td>
<td>44.11</td>
<td>10</td>
<td>22.04</td>
<td>10</td>
<td>41.13</td>
</tr>
<tr>
<td>espn.com</td>
<td>--</td>
<td>11</td>
<td>8.37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>msnbc.com</td>
<td>11</td>
<td>9.60</td>
<td>7</td>
<td>8.85</td>
<td>12</td>
<td>3.14</td>
</tr>
<tr>
<td>fox.com</td>
<td>--</td>
<td>7</td>
<td>8.69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stanford.edu</td>
<td>14</td>
<td>12.73</td>
<td>13</td>
<td>12.73</td>
<td>11</td>
<td>3.83</td>
</tr>
<tr>
<td>fsu.edu</td>
<td>11</td>
<td>27.54</td>
<td>9</td>
<td>27.54</td>
<td>17</td>
<td>30.49</td>
</tr>
<tr>
<td>umich.edu</td>
<td>10</td>
<td>24.12</td>
<td>8</td>
<td>24.11</td>
<td>12</td>
<td>20.72</td>
</tr>
<tr>
<td>mit.edu</td>
<td>21</td>
<td>29.47</td>
<td>6</td>
<td>16.00</td>
<td>24</td>
<td>28.14</td>
</tr>
<tr>
<td>colorado.edu</td>
<td>13</td>
<td>12.32</td>
<td>10</td>
<td>12.32</td>
<td>13</td>
<td>15.10</td>
</tr>
<tr>
<td>u-tokyo.ac.jp</td>
<td>19</td>
<td>175.44</td>
<td>8</td>
<td>15.50</td>
<td>17</td>
<td>141.33</td>
</tr>
<tr>
<td>ucl.ac.uk</td>
<td>19</td>
<td>153.68</td>
<td>12</td>
<td>150.56</td>
<td>19</td>
<td>148.68</td>
</tr>
<tr>
<td>ford.com</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>chevy.com</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>saturn.com</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>saab.com</td>
<td>14</td>
<td>179.37</td>
<td>7</td>
<td>72.29</td>
<td>14</td>
<td>177.33</td>
</tr>
<tr>
<td>audi.com</td>
<td>--</td>
<td>23</td>
<td>174.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bmw.com</td>
<td>12</td>
<td>114.62</td>
<td>9</td>
<td>114.62</td>
<td>16</td>
<td>114.79</td>
</tr>
<tr>
<td>mercedes.com</td>
<td>--</td>
<td>9</td>
<td>162.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>real.com</td>
<td>12</td>
<td>25.84</td>
<td>11</td>
<td>25.84</td>
<td>10</td>
<td>23.80</td>
</tr>
<tr>
<td>mp3.com</td>
<td>13</td>
<td>21.58</td>
<td>8</td>
<td>20.73</td>
<td>13</td>
<td>12.42</td>
</tr>
</tbody>
</table>

Proprietary and Confidential - Do Not reproduce or distribute without permission.

© 2007 netVmg, Inc. All Rights Reserved.
Focus on Shared Path

• Possible to summarize

• Only destinations with full traceroutes
 3372 / 8932

• Histograms of Hop-Count
• Histograms of RTT
 ▪ Approximated as RTT to destination – RTT to convergence point.
Shared Path HOPs

- AT&T and Sprint
- AT&T and UUNet
- AT&T and Exodus
- Sprint and UUNet
- Sprint and Exodus
- UUNet and Exodus
Shared Path RTTs

- AT&T and Sprint
- AT&T and UUNet
- AT&T and Exodus
- Sprint and UUNet
- Sprint and Exodus
- UUNet and Exodus
Interpretation

• Least Diverse: AT&T and Exodus
 ▪ Often shared 10-15 hops with a wide range of shared path RTT.

• Most Diverse: Sprint and Exodus
 ▪ Lowest mean shared path RTT.

• Disclaimer: conclusions depend on the viewpoint and probed endpoints.
Minimum RTTs
Minimum RTTs

<table>
<thead>
<tr>
<th>minimum RTT window</th>
<th>classification</th>
<th># hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mRTT = 14ms</td>
<td>126</td>
</tr>
<tr>
<td>2</td>
<td>14ms < mRTT = 43ms</td>
<td>466</td>
</tr>
<tr>
<td>3</td>
<td>43ms < mRTT = 140ms</td>
<td>1440</td>
</tr>
<tr>
<td>4</td>
<td>140ms < mRTT</td>
<td>1340</td>
</tr>
</tbody>
</table>
Future Work

• Repeat study from multiple viewpoints across the country.

• Correlate with other active TCP probe data.
 ▪ longitudinal SYN/ACK data: RTT, Loss, IPDV
Any Suggestions?

- How could the methodology be improved?
 - Are traceroutes informative?
 - Excluding partial traceroutes?
 - RTT information? Return path issues?
- What are interesting future directions?
 - AS# of Convergence Points? Core routers?
 - Is a longitudinal study necessary?