What’s So Hard About Bandwidth Estimation?

• Aside from the mathematical modeling …

• Bandwidth Estimation techniques stress the capabilities of monitoring platforms:
 – They require accurate collection and accurate emission of packets
 • Accurate collection can be achieved via kernel instrumentation and GPS clocking
 • Accurate emission requires tighter control on generation
 – More so than basic delay/loss/jitter measurements, they require feedback control between the collecting and emitting process to adapt algorithmic behavior.
 – It is also unclear that a single bandwidth estimator will be sufficient for all link speeds, all applications to be measured, and all types of cross traffic.
 • Available bandwidth of a link vs. available bandwidth for a particular traffic class (application) on a link?
 • Do we need the ability to select / switch between multiple techniques as part of an estimation process?
Telcordia Internet Monitoring Platform (IMP)

- Improving the accuracy of the measurement process
 - Better than busy-wait, but without specialized hardware
 - Low cost, easily deployed infrastructure
- Simplify the introduction of new measurement techniques
 - Common plumbing and control
 - Dynamic emission of packets
 - No need to install custom emitters across the network
- Provide a measurement platform for network monitoring systems
 - Accurate measurements for operational support
 - Management of Quality of Service
 - Identification of service-affecting conditions
 - Service Level Agreement support
 - Delay, loss, delay variance and availability are basic requirements
 - Validation of Service Level Agreement claims
 - How does an enterprise know if their agreement is being met?

Telcordia IMP: Internet Monitoring Platform

- A Software Platform to Support Network Traffic Measurements
 - Active measurements of network characteristics
 - One-way end-to-end delay, delay variance, loss, reordering, available bandwidth
 - Probe description language
 - Frequency, spacing, size, contents, (e.g., a customized VoIP probe)
 - SNMP MIB and Command Line Interface Data directly from NEs
 - Extremely accurate time stamps (GPS-based) and probe generation
 - Commercial Off-The-Shelf components + custom software
 - Graphing, reporting, alerting, anomaly detection (wavelet, change point)
Test Bed Environment

- Multiple Cross Traffic Generators
- Multiple Bandwidth Estimators

Techniques for Accurate Packet Emission

- Packet emission can be supported at several layers
 - Application Software Based
 - Busy waits and program loops
 - Easiest to deal with, but subject to high variance
 - Kernel Interrupt Driven
 - Significantly greater accuracy
 - Can be difficult to use
 - Unless a platform provides the details
 - Still interruptible
 - Exploitation of Network Interface Card characteristics
 - Even greater accuracy for higher speeds
 - No interrupts
 - Requires per-NIC driver – difficult to use
 - Modification of NIC firmware
 - Dedicated Hardware
 - More costly to deploy
 - But, you get what you pay for
Kernel Interrupt Driven Packet Generation

- Common hardware – custom software
 - Real-time clock with 122 µsec granularity
 - Network interface card
 - No impact on standard functions
- Design components
 - RTC interrupt-driven state machine used to schedule IMP packet transmission
 - IMP packets bypass the kernel protocol stack
 - IMP packets formatted via an array of P-Spec Packet Descriptors copied into kernel space (/proc).
- 10 and 100 Mbit links

Single Packet Train
IMP: Measurement Plots

- Send 12 trains of 100 packets through network
- Simple Java implementation vs. kernel support
 - (Most code the same)

NIC FIFO Queue Driven Packet Generation

- Common hardware – custom driver
 - Internal NIC clock with 800 nSec cycle time access to packet data
 - Dedicated NIC, separate data path from IP stack packets
 - Still based on IMP packets formatted via an array of P-Spec Packet Descriptors
- Gbit links
Packet Probe Profile Objectives

- Should be independent of the packet generation technique
 - Whether busy wait, interrupt, NIC, dedicated HW
- Allow the receiver to control the behavior of the packet sender.
- Improve the expressiveness of the measurement request.
 - Short but descriptive specifications
- Allow a single packet emitter to generate multiple forms of packet probe profiles.
 - Minimizes the deployment / update problem
- A programmable specification, but without the overhead and variance caused by program execution.
- The mechanism should be small and efficient enough to be kernel resident.

P-SPEC Language

<table>
<thead>
<tr>
<th>Packet variables</th>
<th>p0 - pN</th>
<th>Sets the values of the first N words of a packet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment operators</td>
<td>=, *=, etc.</td>
<td>Binary operators for generating simple progressions such as sequence numbers or varying delays or sizes</td>
</tr>
<tr>
<td>Synchronization commands</td>
<td>wait, sync, delay.</td>
<td>Creates a synchronization point in the stream for communicating back to the measurement collector</td>
</tr>
<tr>
<td>Synchronization variables</td>
<td>arg0 - argN</td>
<td>Control arguments set by "start" or "continue" commands from the collector</td>
</tr>
<tr>
<td>Packet descriptor variables</td>
<td>size, gap, tos,</td>
<td>Define packet constraints such as size and gap before next packet</td>
</tr>
<tr>
<td>Packet generator</td>
<td>packet</td>
<td>Forces a Packet Descriptor to be generated with the current set of values for content, size, etc.</td>
</tr>
<tr>
<td>Looping control</td>
<td>N(...)</td>
<td>Repeat internal instructions N times, for generating repeated subsequences of packets</td>
</tr>
<tr>
<td>General purpose variables</td>
<td>a - z</td>
<td>General purpose variables for processing, but which have no special meaning to the packet generator.</td>
</tr>
</tbody>
</table>

- The Packet statement does not emit a packet, but creates a packet descriptor for later use by the kernel emitter.
- Synchronization statements are used to flush accumulated packet descriptors and possibly await further control information.
P-SPEC – Specification Language for Packet Sequences

- P-Spec gives control over:
 - Packet content
 - Packet size
 - Inter-packet gap
 - Inter-packet-group delay
 - Synchronization data sent back to local requester
 - Control arguments sent from local requester to remote emitter

- Example P-Spec for an Adaptive Dispersion Technique packet sequence (pathload):

 The probe sends fleets of packets, with the packet size, inter packet gap and inter burst delay adjusted by the collecting process according to the analysis algorithm.

```plaintext
fleets_per_burst=3
packets_per_fleet=20
burst=3

*: (  
  WAIT(fleet++)  
  gap=arg0  
  size=arg1  
  delay=arg2  
  p1=0  
  p3=packets_per_fleet  
  fleets_per_burst: (  
    p0=burst  
    p2=0  
    packets_per_fleet: (  
      PACKET()  
      p2+=1  
    )  
    p1+=1  
  )  
  p1+=1  
  DELAY(delay)  
  inter-fleet delay  
)
```

Platform Architecture

- Descriptors:
 - Packet Emitter
 - P-spec Interpreter
 - Remote Measurement Controller
 - P-Spec Compiler
 - Enhanced OS Driver
 - Packet Collector
 - Local Measurement Controller

- Only functions requiring changes for a new measurement technique:
 - Reporting
 - Anomaly Detection
 - Graphing
 - Storage

Reporting, Anomaly Detection, Graphing

Copyright © 2003, Telcordia Technologies, Inc. All Rights Reserved.