Towards Tunable Measurement Techniques for Available Bandwidth

Ningning Hu, Peter Steenkiste
Carnegie Mellon University

BEst 03
12 / 09 / 2003
Outline

• Our experience
 – IGI & PTR
 – PaSt

• A taxonomy of current techniques

• Challenge – tunability
IGI & PTR

- **Uniform packet train probing techniques**
 - Measure either packet gap (IGI) or probing rate (PTR)

- **Search for the turning point**
 - **Turning Point** – The smallest probing gap (largest probing rate) where it is not increased (decreased)

- **Performance**
 - Similar accuracy with Pathload
 - Smaller overhead
Paced Start (PaSt)

• Application of PTR
 – Use PTR to improve TCP startup performance
 – Similar in flavor to TCP NewReno

• PaSt uses multiple windows of data packet train to search for the turning point (available bandwidth)

• Performance [ICNP 03]
 – Less packet loss
 – Smaller startup time
What We Learned from PaSt

• Application’s considerations are very important for the measurement technique design

• Accuracy
 – IGI/PTR sometimes have 30% error, good enough?
 – TCP startup: 50% error can be easily accommodated

• Think MORE about applications!
 – TCP startup: overhead is critical
 – IGI/PTR took all effort to reduce the overhead

• Two-end control
 – Hard to deploy
 – TCP: an two end protocol
Outline

• Our experience
 – IGI & PTR
 – PaSt

• A taxonomy of current techniques

• Challenge – tunability
Taxonomy of Current Techniques

- Pathload
- IGI/PTR
- TOPP
- pathChirp
- Spruce

Ningning Hu, Peter Steenkiste
Bob Melander, Mats Bjorkman, Per Gunningberg
Vinay J. Ribeiro, Rudolf H. Riedi, Richard G. Baraniuk, Jiri Navratil, Les Cottrell

Jacob Strauss, Dina Katabi, Frans Kaashoek

Manish Jain, Constantios Dovrolis
Taxonomy of Current Techniques

<table>
<thead>
<tr>
<th>What to measure</th>
<th>How to measure</th>
<th>Diff.</th>
<th>common</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_bw (rate)</td>
<td>Pathload, PTR, TOPP</td>
<td>pathChirp</td>
<td>Not need B</td>
</tr>
<tr>
<td>C_bw (gap)</td>
<td>IGI</td>
<td>Spruce</td>
<td>Need B</td>
</tr>
<tr>
<td>Diff.</td>
<td>Small interval</td>
<td>Long interval</td>
<td></td>
</tr>
</tbody>
</table>

The list of techniques here is not a complete list.
Outline

• Our experience
 – IGI & PTR
 – PaSt

• A taxonomy of current techniques

• Challenge – tunability
The Challenges

• Two-end control

• Accuracy vs. overhead

• Extreme environment

Deployment and Application – Tunability
Two-End Control

- Single-end control needs echo packets
- Accurate timestamp for the echo packet is hard to get

1. Tunability #1: Single-end probing
 - K.G. Anagnostakis, et.al. *cing: Measuring network-internal delays using only existing infrastructure*. Infocom 03.

2. Return path queueing
Accuracy vs. Overhead

• Accuracy is often a tradeoff with probing overhead

Tunability #2:
Enable application to configure the tradeoff between accuracy and probing overhead
Extreme Environment

• The environment where the bandwidth measurement assumptions don’t hold
 – Time measurement assumption
 – Available bandwidth determining factors

• Tunability #3:
 Deal with the environment of the future

• Wireless network
 – Available bandwidth determining factor could be different
Conclusion

• Our experience from IGI/PTR & PaSt
 – Active probing design must consider both accuracy and overhead
 – The tradeoff is closely related with the application requirement

• Tunability is the key challenge for the deployment of current techniques for available bandwidth measurement
 – Achieve single-end control
 – Understand the tradeoff between accuracy and overhead
 – Solve real system issues