Passive Monitoring of RTT spikes

Jorma Kilpi
VTT Information Technology
P.O.Box 1202, 02044 VTT, FINLAND
Email: Jorma.Kilpi@vtt.fi

(Joint work with Pasi Lassila form HUT)

5th November 2004
Problem formulation:

- Sudden increase in the RTT of a TCP/IP connection is called an RTT spike.
 - Such a phenomenon may exist specially in mobile/wireless environments.
 - Spikes are not congestion related but, instead, are unpredictable for the TCP.
 - In mobile connections mobility management and mobile routing are possible sources of such spikes.
 - In wireless connections the distance to the base station is one possible source of spikes.

- In the worst case the RTT estimation algorithm of TCP gets confused, spurious timeouts and unnecessary retransmissions cause loss of goodput for TCP. (A Strict RTT spike.)

- Even without a retransmission the goodput of TCP gets worse. (A [non-strict] RTT spike.)

- What is the statistical significance of this phenomenon and how to monitor it passively? Statistical inference and modeling?
Available measurements: (In GSM/GPRS, EDGE/GPRS)

- All down- and upstream traffic of a TCP flow goes through the same GGSN.
- Time difference of a data segment and the corresponding ACK, measured at GGSN is called ’half’ RTT.

There are four different ’half’ RTT cases:

<table>
<thead>
<tr>
<th>End host</th>
<th>Mobile</th>
<th>Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>RTT_{MC}</td>
<td>RTT_{IC}</td>
</tr>
<tr>
<td>Server</td>
<td>RTT_{MS}</td>
<td>RTT_{IS}</td>
</tr>
</tbody>
</table>

- We concentrate for RTT_{MC}.
Approach/methodology used: (For statistical inference and modeling purposes)

- We use spectroscopy (Radon transform) to find out link characteristics like the number of uplink Packet Data Channels (PDCHs) and channel codings used in the uplink.

- Given packet sizes B_i and packet interarrival times d_i, measured at the GGSN, we analyze empirical probabilities

$$p(B, d) = \frac{1}{n-1} \sum_{i=1}^{n-1} 1\{(B, d) = (B_{i+1}, d_i)\}.$$

- The Radon transform in our case is defined as

$$p_R(r, v) = \sum_B p\left(B, r + \frac{18.5 + 20}{N_{PDCCH}} N_{block}(B, CS) + \left[8 \times B\right] / v\right)$$
Preliminary results: (How the Radon transform method works)

- This analysis is based only on time stamps and packet sizes.
- Minimum RTT_{MC}?
- According to link characteristics we try to group TCP flows into as homogeneous classes as possible.

VTT Information Technology
Validation: (That RTT spikes can be observed passively)

- It seems that at least 1% of TCP flows suffer from strict RTT spikes.
- There is some evidence that non-strict RTT spikes are much more common.
- An RTT spike for an EDGE user is not a spike for a GSM user!
Next steps: (Work in progress and still in early phases)

- Practical issues:
 - How to get high-quality mobile TCP data. (Subscribers’ privacy, operator’s business secrets, organization, technical issues et cetera).

- Theoretical issues:
 - Statistically useful definition of an RTT spike? (Unnecessary retransmission may identify a strict RTT spike but non-strict spikes are also of importance.)
 - Homogeneous classes according to the link characteristics would be required for more fruitful statistical inference!
 - Robustness and minimum requirements of the Radon transform method?