ANT: Analysis of Network Traffic

Christos Papadopoulos
John Heidemann
Antonio Ortega
Urbashi Mitra

Alefiya Hussain, Xinming He
Usman Riaz, Connie Kung
Gen Bartlett, Rishi Sinha

http://www.isi.edu/ant
Outline

- Modeling packet-capture systems
- Detecting saturated links by looking at the aggregate
- Measuring bandwidth fluctuations
Modeling Packet Capture Systems

- Question: how do we represent a packet capture system in traditional signal processing terms?
 - what sampling frequencies are required?
 - what kinds of error should we expect?

- Components of interest:
 - standard Ethernet card vs. DAG packet capture card
 - effects of interrupt rate, basic network speed, tcpdump/PC clock resolution, etc.
Idealized Network

- 100Mb/s => 1 bit every 10ns => 100MHz
 but we care about packets
- 40B minimum packet size
 320k pkts/s => pkt every 3.2us => 320kHz
- or 1500B max pkt size
 => pkt every 120us => 8400Hz

but network card, OS, measurement s/w effects?
Measurement System Model

networking card counts number of arrivals in 50us interval => downsampling
tcpdump timestamps at lower resolution, it time stamps when it finishes interaction with card => upsampling
Outline

- Modeling packet-capture systems
- Detecting saturated links by looking at the aggregate
- Measuring bandwidth fluctuations
Spectral Characteristics of Saturated Links

- A saturated (bottleneck) link will clock packets out at a regular interval, depending on:
 - Link speed
 - Packet size

- Question: can we detect the presence of a saturated link by examining the aggregate?

- Work done by Xinming He
Spectrum of a Saturated 100 Mbps Ethernet

Signal at ~8KHz corresponding to back-to-back max-size packets
Spectrum of a Saturated 10Mbps Ethernet

Signal at ~800Hz corresponding to back-to-back max-size packets
Does the Bottleneck Signal Survive?

Experiment with three types of cross-traffic:
- Type I: shares bottleneck
- Type II: does not share bottleneck, not visible at observation point
- Type II: does not share bottleneck, visible at observation point

Cross traffic generated with surge (web traffic generator)
Experiment with Type I cross traffic (shares bottleneck)

Result: signal survives

(a) with light web traffic (10 UEs)

(b) with light web traffic (80 UEs)

(c) with heavy web traffic (640 UEs)

Power spectra as Type I cross-traffic increases
Experiment with Type II cross Traffic (does not share bottleneck, not visible at monitoring point)

Result:
Signal survives

- Power spectra as Type II cross-traffic increases
Experiment with Type III cross traffic (does not share bottleneck, visible at monitoring point)

Result: Signal still detectable

- Power spectrum as Type III cross-traffic increases
Internet II Experiments

Monitoring at our ISP
Artificially saturated a link on path from UCSB
Our Bottleneck Detection Methods

- Leverage off existing techniques for signal detection in wireless transmission.

- Approach:
 - Train on traffic with and without bottleneck
 - Compare distributions:
 - Amplitude distribution of a single frequency
 - Top amplitude in a frequency band
 - All amplitudes in a frequency band
 - Top M amplitudes in a frequency band

- How about detection algorithms with no training?
Outline

- Detecting saturated links by looking at the aggregate
- Modeling packet-capture systems
- Measuring bandwidth fluctuations
Detecting BW Fluctuations in a Path

Goal: characterize periodic fluctuations in available BW in a path at small timescales (~10Hz)

- Characterize paths for demanding applications
- Diagnostic tool for network operators
- Investigate and characterize any transient and/or persistent phenomena
- Characterize Internet paths
- Work done by Rishi Sinha
Approach

- Sample available bandwidth continuously, using poison low rate packet-pair dispersion measurements (2-4% of link capacity).
- Create a timeseries of packet dispersion values.
- Average the timeseries using moving average window to eliminate high frequencies.
- Determine any periodicities by applying FFT on the averaged time series.
- Work in progress..
Internet Validation

- Create artificial background traffic fluctuating at a known frequency.
- Attempt to detect the frequency.
- Experiments in the lab and on the Internet
- Results seem good – can detect frequencies up to 10 Hz by detecting peak amplitude in the FFT.
Periodicities are Sometimes Obvious

Experiment between USC and Umass
Duration: 60mins
Future Directions

- Refine measurement modeling
- Refine our bottleneck detection algorithms and develop a tool
- Run BW fluctuation experiments over PlanetLab to characterize a larger set of paths

http://www.isi.edu/ant