Prologue

Yuval Shavitt
School of Electrical Engineering

shavitt@eng.tau.ac.il
http://www.netDimes.org
http://www.eng.tau.ac.il/~shavitt

Diminishing return?
- Replace instrumentation boxes with software agents
- Ask for volunteers do help with the measurement
- The cost of the first agent is very high
- each additional agent costs almost zero

Advantages
- Large scale distribution: view the Internet from everywhere
- Remove the “academic bias”, measure the commercial Internet

Capabilities
- Anything you can write in Java!
- Obtaining Internet maps at all granularity level with annotations
 - connectivity, delay, loss, bandwidth, capacity, jitter,
- Tracking the Internet evolution in time
- Monitoring the Internet in real time
What do we do with DIMES?

DIMES data analysis
- k-shell analysis [Carmi et al., PNAS07]
- Bias analysis [Weinsberg & S., Infocom 09; …]
- Anonymous router identification [Almog et al., MCD08]
- Efficient motif identification [Gonen & S., WAW09; …]

Generating periodic PoP level maps
- Coarse PoP identification [Feldman & S., Globecomm]
- PoP Geo-location [under work]

New Measurements
- Packet Trains [Allalouf, Kaplan & S., Tridentcom09]
- ParisTraceroute

Optimizing DIMES operation
- Approximation results [Gonen & S., IPL 09; …]

DIMES and You

- Data is available to all
 - Periodic topologies are on the web
 - Other data is gladly shared by request
- Others are running distributed experiments thru Web
 - easy to use
- Easy to add new capabilities
- Future
 - Open DIMES data for applications
 - Internet distance service
 - Improve P2P application
 - PlanetLab deployment (within days)
- We can also use your help: download an agent
 http://www.netDimes.org
Other measurement activities

- P2P Networks
 - 15-40% of queries to Gnutela for >100 days
 - Spatial-temporal analysis of Gnutela queries [Gish, Tankel, S., IPTPS’07]
 - Predicting artist success from queries [Koenigstein, S., Tankel, KDD’08; …]
 - Disk content for 1.2M users in same day
 - Content clustering [Weinsberg, Weinsberg, S, submitted]
 - DC queries collection effort

- Cellphone network
 - 1 Million private users. monthly summaries of calls, talk time, SMSs
 - Data on users: age, gender, zip, group
 - Commercial data

Quantifying the Importance of Vantage Points Distribution in Internet Topology Measurements

Yuval Shavitt and Udi Weinsberg
School of Electrical Engineering
Tel-Aviv University
Israel
Goals

- **Bias**
 - Does the distance from the measurement vantage points (VPs) skew our topology characteristics?
- **Quantify the importance of a diverse and broad set of VPs on the resulting topology.**

Data Set

- **Data is obtained from DIMES**
 - Community-based infrastructure, using almost 1000 active measuring software agents
 - Agents follow a script and perform ~2 probes per minute (ICMP/UDP traceroute, ping)
 - Most agents measure from a single AS (vp)
 - But some (appear to) measure from more…
 - Data need to be filtered to remove artifacts
 - Traceroute data collected during March
Filtering the data

- For each agent and each week, classify how many networks it measured the Internet from.
- Typical cases:
 - $AS_i:15300$, $AS_j:8$
 - $AS_i:10000$, $AS_j:3178$
 - $AS_i:10000$, $AS_j:412$, $AS_k:201$
 - $18000, 12, 11, 9, 9, 3, 3, 2, 2, 1, 1, 1, 1, 1, ...$

Measurements Per Agent
Filtering Results

- 96% of the agents have less than 4 different vps
- High degree ASs tend to have more agents
- High number vps degrees

Diminishing Returns?

- Barford *et. al.* – the utility of adding many vps quickly diminishes
 - In terms of ASes and AS-links
- Shavitt and Shir – utility indeed diminishes but the tail is long and significant
 - Tail is biased towards horizontal links
- We wish to quantify how different aspects of AS-level topology are affected by adding more vps
Creating topologies per VP

The return (especially for AS links) does not diminish fast!

VP with small local topology can contribute many new links!
Direction of Detected Links

- For each link: Plot max adjacent AS degree and max adjacent ASes degree difference

Convergence of Properties

- Taking several common AS-level graph properties, and analyze their convergence as local topologies are added
 - Keeping the sort order by number of links
- Slow convergence indicates the need to have broad and diverse set of vps
Density and Average Degree

Slow convergence of density and average degree – easy to detect ASes but difficult to find all links

Power-law and Max Degree

Fast convergence of maximal degree – core links are easily detected

Fair convergence of power-law $\exp \gamma = 2.197$
Betweenness and Clustering

Fast convergence of max bc – Level 3 (AS3356), a tier-1 AS is immediately detected as having max bc.

Radial links decrease cc

Tangential links increase cc

Revisiting Sampling Bias

- Lakhina et al. – AS degrees inferred from traceroute sampling are biased
 - ASes in vicinity to vps have higher degrees
 - Power-law might be an artifact of this!
- Dall’asta et al. – no...it is quite possible to have unbiased degrees with traceroutes
- Cohen et al. – when exponent is larger than 2, resulting bias is negligible
Evaluating Sampling Bias

- For each AS find:
 - All the vps that have it in their local topology
 - The Valley-Free distance in hops

Dataset VPs and Distances

Low degree ASes are seen from less vps than high-degree ASes...this makes sense!

In our dataset, most ASes have a vp that is only 1-2 hops away!
Average Distance per Degree

Low degree ASes are seen from farther vps…sampling bias?

No real bias!
• More VPs are located in high-degree ASes
• There are high-degree ASes that are seen from “far” vps
• Broad distribution – all ASes are pretty close-by to a vp!

Revisiting Diversity Bias

• What is the effect of diversity in vps geo-location and network type?
 ◦ Some infrastructures rely on academic networks for vp distribution – does it have an effect on the resulting topology?
• We compare iPlane and DIMES
 ◦ Classify AS into types: t1,t2, edu, comp, ix, nic using Dimitropoulos et al.
Diversity Bias Evaluation

Vantage Points’ Types of iPlane and DIMES

<table>
<thead>
<tr>
<th></th>
<th>t1</th>
<th>t2</th>
<th>edu</th>
<th>comp</th>
<th>ix</th>
<th>nic</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPlane</td>
<td>17</td>
<td>104</td>
<td>117</td>
<td>22</td>
<td>3</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td>DIMES</td>
<td>23</td>
<td>129</td>
<td>6</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>47</td>
</tr>
</tbody>
</table>

iPlane uses many PlanetLab nodes (edu), while DIMES resides mostly at homes (tier-2).

Indeed DIMES have higher t2 and comp degrees and iPlane have higher edu degrees – results are slightly biased to vps’ types!

In Search of Ground Truth

- One week is not sufficient for active measurements

Average AS degrees using RouteViews, DIMES and iPlane per AS Types

<table>
<thead>
<tr>
<th></th>
<th>t1</th>
<th>t2</th>
<th>edu</th>
<th>comp</th>
<th>ix</th>
<th>nic</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>RouteViews</td>
<td>575.84</td>
<td>9.1</td>
<td>3.4</td>
<td>24.29</td>
<td>14.85</td>
<td>5.42</td>
<td>3.2</td>
</tr>
<tr>
<td>DIMES</td>
<td>528.31</td>
<td>8.36</td>
<td>3.34</td>
<td>2.3</td>
<td>7.96</td>
<td>4.06</td>
<td>3.86</td>
</tr>
<tr>
<td>iPlane</td>
<td>565.31</td>
<td>8.47</td>
<td>5.83</td>
<td>2.45</td>
<td>22.82</td>
<td>4.12</td>
<td>4.5</td>
</tr>
</tbody>
</table>

- Both iPlane and DIMES have lower average degrees than RouteViews
 - Except iPlane’s edu and ix!
 - Diversity bias exists – need diverse vp types!
Measuring Within a Network

- Comparing vp average degrees to quantify the effect of measuring within a network

<table>
<thead>
<tr>
<th>VPs</th>
<th>Avg. Degree</th>
<th>1h</th>
<th>12</th>
<th>edu</th>
<th>comp</th>
<th>iX</th>
<th>nic</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPlane</td>
<td>951.5</td>
<td>36.0</td>
<td>9.4</td>
<td>8.1</td>
<td>172.0</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>DIMES</td>
<td>904.7</td>
<td>38.0</td>
<td>2.6</td>
<td>9.1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>11357.0</td>
<td>89.5</td>
<td>3.0</td>
<td>2.0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Indeed, the average degree when measuring within a network is mostly higher (hmm…tier-1 doesn't count cause most vps are the same!)

Conclusion

- VP distribution is important
 - Number, AS type, geo-location
- AS-level graph properties are affected
 - Some converge very fast
 - Other converge slowly
- Community based projects have practically unlimited growth potential!