

<MOMENT>

A Measurement Study of the Origins of End-to-End Delay Variations

Yuval Shavitt School of Electrical Engineering

shavitt@eng.tau.ac.il
http://www.netDIMES.org
http://www.eng.tau.ac.il/~shavitt

DIMES Status Report

- Now also use PlanetLab (currently mostly PE)
- New agent:
 - New Traceroute
 - Stop using MTR code
 - Paris Traceroute (ICMP & UDP)
 - Bidirectional packet train module
 - Higher measurement rate (5 or 6 per minute)

A Measurement Study of the Origins of End-to-End Delay Variations

Yuval Shavitt and Udi Weinsberg
Tel-Aviv University

Problem Setting

- The Internet exhibits non-stable routes
 - Failures
 - Load balancing
 - Changes incommercial agreements
- This often affect delay, which affects many applications
 - Inconsistent delays (Jitter)
 - Asymmetric delays

Work Goal

- Understand the origins of e2e delay variations
 - Result from existence of multiple routes
 - designed load balancing or transient failures
 - Result of problems within each route
 - intra-route issues (congestion, failures)

Related Work

- [Wang et al., Pucha et al.] studied the impact that specific routing events have on the overall delay
 - Routing changes result in significant RTT delay increase
 - However, variability is small
- [Augustin *et al.*] examined the delay between different parallel routes in short time epoch
 - Only 12% have a delay difference which is larger than 1ms
- [Pathak et al.] studied the delay asymmetry
 - There is a strong correlation between one-way delay changes and route changes

Key Differences

- We study the RTT delay along longer time periods
- Examine the difference of the delay distribution between parallel routes
- Focus on the origin of delay variability
 - Within each route (e.g., congestion)
 - Due to multiple routes (e.g., load-balance)

How do we measure?

- Use DIMES for conducting two experiments
 - 2006 and 2009
 - 100 agents measures to each other
 - Broad set of ASes and geo locations
 - Active traceroute (ICMP and UDP)
 - Each agent probes each IP address twice every two hours
 - 4 days of probing
 - Collect the route IPs and e2e delay

Agent Statistics (1)

- 2006
 - 102 agents
 - Million traceroutes
 - 6861 e2e pairs
 - VPs in North
 America (70),
 Western Europe
 (14), Australia (10),
 Russia (6), Israel (2)
- 2009
 - 105 agents
 - Million traceroutes
 - 10950 e2e pairs
 - VPs in Western
 Europe (41), North
 America (38), Russia
 (14), Australia (4),
 South America (2),
 Israel (2), Asia (4)

Agents Statistics (2)

- 2006
 - 18% tier-1
 - 78% tier-2
 - 3% small companies
 - 1% educational

- 2009
 - 14% tier-1
 - 58% tier-2
 - 28% educational

Only 7 agents participated in both

Identifying Routes and Pairs

- Using community-based infrastructure:
 - Routes can start and end in private IP space
 - Users can measure from different locations
- Only the routable section of each path is considered
 - The source (S) is the first routable IP
 - The destination (D) is the last routable IP

Some Accounting

- The e2e pair P_i=(S,D) contains all the routes that were measured between S and D
- For pair P_i, each route j was seen in |Eⁱ_j|
 different paths
- For pair P_i, the dominant route Eⁱ_r is the route that was seen the most times
 - There can be several dominant routes with equal prevalence
 - For brevity we assume there is one at index r

What do we measure?

- Stability of e2e routes
 - Use Edit Distance (ED) as a measure for difference between two routes
 - · Counting insert, delete, and substitute operations
 - Normalize ED by the maximal route length
 - Can compare between ED of routes with different length
 - \widehat{ED}_{jr}^{i} marks normalized ED for pair i between routes j and r

What do we measure?

- Stability of e2e routes
 - The stability is the weighted average of ED of all non-dominant routes to the dominant route of nearest length:

$$RouteISM_i = \sum_{j \neq r} \left(|E_j^i| \cdot \widehat{ED}_{jr}^i \right) / \sum_{j \neq r} |E_j^i|$$

 A second stability measure is the prevalence of the dominant route

What do we measure?

- Stability of RTT delays
 - Each route Eⁱ_j has a set of RTT delays,
 corresponding to each measured path
 - Treat each delay value as a *sample*, consider the 95% confidence interval surrounding the mean delay $CI(E^i)$
 - High variance samples result in long CI

What do we measure?

- Stability of RTT
 - RTT stability of a two routes is the intersection between their Cl's, normalized by the minimal Cl

$$\widehat{O}^i_{jk} = \frac{CI(E^i_j) \bigcap CI(E^i_j)}{\min\{|CI(E^i_j)|, |CI(E^i_j)|\}}, \forall j \neq k$$

Key Concept

- Overlapping Cl's (left)- intra-route delay variance
- Non-overlapping (right) inter-route delay variance

(b) $69.134.208.1 \rightarrow 134.159.160.58$

Take Home Message

- For 70% of the pairs and for over 95% of the academic pairs, the delay variations are mostly within the routes
- Internet e2e routes are mostly stable, however these intra-route delay variations still affect application!

Things to Note

- We measure RTT values
 - Capture forward and reverse path delay
 - Stability is only on the forward path
 - However, 90% of our routes have very similar forward and reverse paths
 - Indicating that stability of one-way is a good estimation
- Using UDP and ICMP
 - Capture all possible routes, not flows
 - Upper bound for instability

Results – Route Statistics

- Both have roughly the same route length and median delay
- Shorter routes than Paxson's (11-12 hops)

Results – Route and Delay Instability

- When the difference between routes is high, higher chances of different delay distribution
- Prevalence does not significantly indicate level of overlap!

Results – Additional Findings

- Over 95% of the pairs that have academic source and destination ASes have an overlap of over 0.7
 - Academic networks having small route difference induced by local load-balancing and little usage of "spill-over" backup routes
- Only 5% of the pairs that have both source and destination in the USA witnessed overlap of 0

Conclusions

- A measurement study of the e2e delay variance and its origins using overlap of confidence intervals
- Techniques for quantifying route stability
- For roughly 70% of the pairs and for over 95% of the academic pairs, the delay variations are mostly within the routes and not between different routes

Thank You!